¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÔA1£¬A2Ϊ½¹µãµÄË«ÇúÏßEÓë°ë¾¶ÎªcµÄÔ²OÏཻÓÚC£¬D£¬C1£¬D1£¬Á¬½ÓCC1ÓëOB½»ÓÚµãH£¬ÇÒÓУº
OH
=(3+2
3
)
HB
£®ÆäÖÐA1£¬A2£¬BÊÇÔ²OÓë×ø±êÖáµÄ½»µã£¬cΪ˫ÇúÏߵİ뽹¾à£®
£¨1£©µ±c=1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»
£¨2£©ÊÔÖ¤£º¶ÔÈÎÒâÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£®
£¨3£©Á¬½ÓA1CÓëË«ÇúÏßE½»ÓÚF£¬ÊÇ·ñ´æÔÚ
ʵÊý¦Ë£¬Ê¹
A1F
=¦Ë
FC
ºã³ÉÁ¢£¬Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÌâÒâ¿ÉÇóµÃBµÄ×ø±êºÍHµÄ×ø±ê£¬Éè³öÇúÏßEµÄ·½³Ì£¬°ÑµãC´úÈëÇúÏßE£¬ÀûÓð뽹¾àcÁªÁ¢·½³ÌÇóµÃaºÍb£¬ÔòÇúÏßEµÄ·½³Ì¿ÉµÃ£®
£¨2£©¸ù¾ÝÌâÒâ¿É±íʾ³öHµÄ×ø±ê£¬Éè³öÇúÏßEµÄ·½³Ì£¬ÁªÁ¢·½³ÌÇóµÃaºÍbµÄ¹Øϵ£¬½ø¶ø¸ù¾ÝË«ÇúÏßÖÐa£¬bºÍc¹ØϵÇóµÃaºÍcµÄ¹Øϵ£¬ÔòË«ÇúÏßµÄÀëÐÄÂʿɵã®ÍƶϳöË«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£®
£¨3£©ÏȼÙÉè´æÔÚʵÊý¦Ë£¬ÒÀÌâÒâ¿ÉÖªCµã×ø±ê£¬ÀûÓÃ
A1F
=¦Ë
FC
±íʾ³öFµÄ×ø±ê£¬·Ö±ð´úÈëË«ÇúÏߵķ½³Ì£¬ÁªÁ¢ÇóµÃ¦Ë¹ØÓÚeµÄ±í´ïʽ£¬½ø¶ø¸ù¾Ý£¨2£©ÖÐeΪ³£ÊýÍƶϳö´æÔÚʵÊý¦ËʹÌâÉèµÈʽ³ÉÁ¢£®
½â´ð£º½â£º£¨1£©ÓÉc=1ÖªB£¨0£¬1£©£¬¡ß
OH
=(3+2
3
)
HB
£¬
¡àxH=0£¬yH=
3+2
3
4+2
3
=
3
2

¼´H£¨0£¬
3
2
£©µãCÔÚµ¥Î»Ô²ÉÏ£¬¡àC=£¨
1
2
£¬
3
2
£©
ÉèË«ÇúÏßEµÄ·½³ÌΪ
x2
a2
-
y2
b2
=1
£¨a£¾0£¬b£¾0£©£®
ÓɵãCµÄË«ÇúÏßEÉÏ£¬°ë½¹¾àc=1ÓУº
a2+b2=1
1
4a2
-
3
4b2
=1

½âµÃ
a2=1-
3
2
b2=
3
2

ËùÒÔË«ÇúÏßEµÄ·½³ÌΪ£º
x2
1-
3
2
-
y2
3
2
=1

£¨2£©Ö¤Ã÷£º¡ßA1£¨-c£¬0£©£¬B£¨0£¬c£©£¬
ÓÉO
H
=(3+2
3
)H
B
µÃ£ºH£¨0£¬
3
2
£©£¬£¨
1
2
c£¬
3
2
c£©
ÉèË«ÇúÏßEµÄ·½³ÌΪ
x2
a2
-
y2
b2
=1
£¨a£¾0£¬b£¾0£©
¡à
a2+b2=c2¢Ù
c2
4a2
-
3c2
4b2
=1¢Ú

¢Ù´úÈë¢Ú£¬»¯¼òÕûÀíµÃ3a4+6a2b2-b4=0£¬
¡à(
b
a
)4-6(
b
a
)
2
-3=0

½âµÃ(
b
a
)
2
=3+2
3

ÓÖe2=
c2
a2
=1+(
b
a
)
2
=4+2
3
£®
¡àe=
4+2
3
=
3
+1
£¬¼´Ë«ÇúÏßEµÄÀëÐÄÀëÊÇÓëcÎ޹صij£Êý£®
£¨3£©¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹A1
F
=¦ËF
C
ºã³ÉÁ¢£¬
A1£¨-c£¬0£©£¬C(
c
2
£¬
3
c
2
)
ÓÐxF=
-c+
c
2
•¦Ë
1+¦Ë
£¬yf=
3
2
•¦Ë
1+¦Ë

µãF
c(¦Ë-2)
2(1+¦Ë)
£¬
3
¦Ë
2(1+¦Ë)
µãC£¬F¶¼ÔÚË«ÇúÏßEÉÏ£¬
¹ÊÓÐ
c2
4a2
-
3c2
4b2
=1¢Û
c2(¦Ë-2)2
4a2(1+¦Ë)2
-
3c2¦Ë2
4b2(1+¦Ë)2
¢Ü

ÓÉ¢ÛµÃe2-
3c2
b2
=4?
c2
b2
=
e2-4
3
¢Ý
¢Ý´úÈë¢ÜµÃ
e2(¦Ë-2)2
4(1+¦Ë)2
-(e2-4)•
¦Ë2
4(1+¦Ë)2
=1
£¬
»¯¼òÕûÀíµÃ-¦Ëe2+e2=2¦Ë+1
¼´¦Ë=
e2-1
e2+2
£¬ÀûÓã¨2£©Ð¡ÌâµÄ½áÂ۵㺦Ë=
3+2
3
6+2
3
=
1+
3
4

¹Ê´æÔÚʵÊý¦Ë=
1+
3
4
£¬Ê¹A1
F
=¦ËF
C
ºã³ÉÁ¢£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÎÊÌ⣬˫ÇúÏߵıê×¼·½³ÌºÍË«ÇúÏߵļòµ¥ÐÔÖÊ£®¿¼²éÁËÔËËãµÄÄÜÁ¦£¬·ÖÎöÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ëæ»ú³éȡij²úÆ·n¼þ£¬²âµÃÆ䳤¶È·Ö±ðΪÒÔa1£¬a2£¬¡­£¬an£¬ÔòÈçͼËùʾµÄ³ÌÐò¿òͼÊä³öµÄs=
a1+a2+a2+¡­+an
n
a1+a2+a2+¡­+an
n
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÔA1¡¢A2Ϊ½¹ µãµÄË«ÇúÏßEÓë°ë¾¶ÎªcµÄÔ²OÏཻÓÚC¡¢D¡¢C1¡¢D1£¬Á¬½ÓCC1ÓëOB½»ÓÚµãH£¬ÇÒÓÐÊÇÔ²OÓë×ø±êÖáµÄ½»µã£¬cΪ˫ÇúÏߵİ뽹¾à.

£¨1£©µ±c=1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»

£¨2£©ÊÔÖ¤£º¶ÔÈÎÒâÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£»

£¨3£©Á¬½ÓA1C£¬ÓëË«ÇúÏßE½»ÓÚµãF£¬ÊÇ·ñ´æÔÚʵÊý£¬Ê¹ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³öµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÔA1¡¢A2Ϊ½¹ µãµÄË«ÇúÏßEÓë°ë¾¶ÎªcµÄÔ²OÏཻÓÚC¡¢D¡¢C1¡¢D1£¬Á¬½ÓCC1ÓëOB½»ÓÚµãH£¬ÇÒÓÐÊÇÔ²OÓë×ø±êÖáµÄ½»µã£¬cΪ˫ÇúÏߵİ뽹¾à.

£¨1£©µ±c=1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»

£¨2£©ÊÔÖ¤£º¶ÔÈÎÒâÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£»

£¨3£©Á¬½ÓA1C£¬ÓëË«ÇúÏßE½»ÓÚµãF£¬ÊÇ·ñ´æÔÚʵÊý£¬Ê¹ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³öµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009Äê¸ß¿¼ÊýѧѹÖáÊÔ¾í¼¯½õ£¨10£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

Èçͼ£¬ÒÔA1£¬A2Ϊ½¹µãµÄË«ÇúÏßEÓë°ë¾¶ÎªcµÄÔ²OÏཻÓÚC£¬D£¬C1£¬D1£¬Á¬½ÓCC1ÓëOB½»ÓÚµãH£¬ÇÒÓУº£®ÆäÖÐA1£¬A2£¬BÊÇÔ²OÓë×ø±êÖáµÄ½»µã£¬cΪ˫ÇúÏߵİ뽹¾à£®
£¨1£©µ±c=1ʱ£¬ÇóË«ÇúÏßEµÄ·½³Ì£»
£¨2£©ÊÔÖ¤£º¶ÔÈÎÒâÕýʵÊýc£¬Ë«ÇúÏßEµÄÀëÐÄÂÊΪ³£Êý£®
£¨3£©Á¬½ÓA1CÓëË«ÇúÏßE½»ÓÚF£¬ÊÇ·ñ´æÔÚ
ʵÊý¦Ë£¬Ê¹=¦Ëºã³ÉÁ¢£¬Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸