精英家教网 > 高中数学 > 题目详情
设函数,其图象与轴交于两点,且x1x2
(1)求的取值范围;
(2)证明:为函数的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.
(1);(2)详见解析;(3) 

试题分析:(1)根据题意图象与轴交于两点,由零点的定义可得:函数的图象要与x轴有两个交点,而此函数的特征不难发现要对它进行求导,运用导数与函数的关系进行求函数的性质,即:,a的正负就决定着导数的取值情况,故要对a进行分类讨论:分两种情况,其中显然不成立,时转化为函数的最小值小于零,即可求出a的范围; (2)由图象与轴交于两点,结合零点的定义可得:整理可得:,观察其结构特征,可想到整体思想,即:,目标为:,运用整体代入化简可得:,转化为对函数进行研究,运用导数知识不难得到,即:,故而是单调增函数,由不等式知:,问题可得证; (3)由题意有,化简得,而在等腰三角形ABC中,显然只有C = 90°,这样可得,即,结合直角三角形斜边的中线性质,可知,所以,即,运用代数式知识处理可得: ,而,所以,即,所求得 
试题解析:(1)
,则,则函数是单调增函数,这与题设矛盾.         2分
所以,令,则
时,是单调减函数;时,是单调增函数;
于是当时,取得极小值.                                    4分
因为函数的图象与轴交于两点(x1x2),
所以,即
此时,存在
存在
又由上的单调性及曲线在R上不间断,可知为所求取值范围.   6分
(2)因为 两式相减得
,则,     8分
,则,所以是单调减函数,
则有,而,所以
是单调增函数,且
所以.                                           11分
(3)依题意有,则
于是,在等腰三角形ABC中,显然C = 90°,        13分
所以,即
由直角三角形斜边的中线性质,可知
所以,即
所以

因为,则
,所以,                    15分
,所以                               16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的单调区间;
(2)证明:对任意的,存在唯一的,使
(3)设(2)中所确定的关于的函数为,证明:当时,有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在实数集上的函数.
⑴求函数的图象在处的切线方程;
⑵若对任意的恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数..
(1)设曲线处的切线为,点(1,0)到直线l的距离为,求a的值;
(2)若对于任意实数恒成立,试确定的取值范围;
(3)当是否存在实数处的切线与y轴垂直?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,().
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线处的切线互相平行,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 
(1)求函数处的切线的斜率;
(2)求函数的最大值;
(3)设,求函数上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若一球的半径为r,作内接于球的圆柱,则其圆柱侧面积最大为(  )
A.2πr2
B.πr2
C.4πr2
D.πr2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在上的函数满足:,且对于任意的,都有,则不等式的解集为 __________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=-cosx,若,则(     )
A.f(a)>f(b)B.f(a)<f(b)C.f(a)=f(b)D.f(a)f(b)>0

查看答案和解析>>

同步练习册答案