分析 (1)根据使函数有意义的原则,可得由$\left\{\begin{array}{l}x+2≥0\\ 2x+1≠0\end{array}\right.$,解得函数的定义域;
(2)将x=-1,x=a+1代入可得对应的函数值;
(3)将x=2,代入判断函数值是否等于$\frac{11}{5}$,可得结论.
解答 解:(1)由$\left\{\begin{array}{l}x+2≥0\\ 2x+1≠0\end{array}\right.$得:x∈$[-2,-\frac{1}{2})∪(-\frac{1}{2},+∞)$,
故函数的定义域为:$[-2,-\frac{1}{2})∪(-\frac{1}{2},+∞)$;
(2)∵f(x)=$\sqrt{x+2}+\frac{1}{2x+1}$,
∴f(-1)=1-1=0,
f(a+1)=$\sqrt{a+3}+\frac{1}{2a+3}$,
(3)当x=2时,f(2)=2+$\frac{1}{5}$=$\frac{11}{5}$,
故点$({2,\frac{11}{5}})$在f(x)的函数图象上.
点评 本题考查的知识点是函数的定义域,函数求值,图象的方程,难度不大,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 3 | B. | $\sqrt{3}$ | C. | $2\sqrt{3}$ | D. | $\sqrt{3}$或$2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}-1}{4}$ | D. | $\frac{1-\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 重心 | B. | 内心 | C. | 垂心 | D. | 外心 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,1) | B. | (-∞,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com