精英家教网 > 高中数学 > 题目详情
19.对于函数y=f(x)(x∈R),给出下列命题:
①在同一直角坐标系中,函数y=f(-1-x)与y=f(x-1)的图象关于直线x=0对称;
②若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=1对称;
③若f(1+x)=f(x-1),则函数y=f(x)是周期函数;
④若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称.
其中所有正确命题的序号是①③④.

分析 根据函数对称变换法则,可判断①;根据函数的对称性,可判断②④;根据函数的周期性,可判断③.

解答 解:设函数y=f(-1-x)与y=f(x-1)的图象关于直线x=a对称,
则f[-1-(2a-x)]=f(x-1),即2a-1=-1,解得:a=0,
即函数y=f(-1-x)与y=f(x-1)的图象关于直线x=0对称,故①正确;
若f(1-x)=f(x-1),则函数y=f(x)的图象关于直线x=$\frac{1-1}{2}$=0对称,故②错误;
③若f(1+x)=f(x-1),f(x+2)=f[1+(1+x)]=f[(1+x)-1}=f(x),
则函数y=f(x)是周期为2的周期函数,故③正确;
④若f(1-x)=-f(x-1),则函数y=f(x)的图象关于点(0,0)对称,故④正确.
故答案为:①③④

点评 若f(a-x)=f(b+x)则函数图象关于直线x=$\frac{a+b}{2}$对称;若f(a-x)+f(b+x)=2c,则函数图象关于($\frac{a+b}{2}$,c)对称;若f(a+x)=f(b+x),则函数的周期为|a-b|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.程序框图如图所示,若输入值t∈(0,3),则输出值S的取值范围是(  )
A.(0,4)B.(0,4]C.[0,9]D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.抛物线有光学性质,即由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出,反之亦然.如图所示,今有抛物线y2=2px(p>0),一光源在点M($\frac{41}{4}$,4)处,由其发出的光线沿平行于抛物线的轴的方向射向抛物线上的点P,反射后,又射向抛物线上的点Q,再反射后又沿平行于抛物线的轴的方向射出,途中遇到直线l:2x-4y-17=0上的点N,再反射后又射回点M,设P,Q两点的坐标分别是(x1,y1),(x2,y2),
(Ⅰ)证明:y1y2=-p2
(Ⅱ)求抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.公理一:如果一条直线l上的两点A,B在一个平面α内,那么这条直线l在此平面内.请用数学的符号语言表示为A∈l,B∈l,A∈α,B∈α⇒l?α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\frac{\frac{1}{6}•(-1)^{1+{C}_{2x}^{x}}•{A}_{x+2}^{5}}{1+{C}_{3}^{2}+{C}_{4}^{2}+…+{C}_{x-1}^{2}}$ (x∈N)的最大值是-20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A、B、C所对的边分别为a,b,c.已知sinC=$\frac{\sqrt{10}}{4}$,a=2,2sinA=sinC,求b及c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)在其定义域上既是减函数又是奇函数,则函数f(x)的解析式可以是(  )
A.$f(x)={log_2}(\sqrt{{x^2}+1}-x)$B.$f(x)=\frac{1}{x}$C.f(x)=x2-x3D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)=xn,若f′(2)=12,则n等于(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈N|x≤1},B={x|x⊆A},C={x|x⊆B},则集合C中元素的个数为(  )
A.4B.8C.16D.20

查看答案和解析>>

同步练习册答案