精英家教网 > 高中数学 > 题目详情

【题目】12分)已知函数fx=

1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.

2)求该函数在区间[1,4]上的最大值与最小值.

【答案】(1)见解析;(2)最大值f(4)=最小值f(1)=.

【解析】

试题分析:(1)用定义法证明单调性的步骤:定义域上任取,计算的正负,若则函数为增函数,若则函数为减函数;(2)由(1)中函数单调性确定函数在区间[1,4]上的单调性,从而确定函数的最大值和最小值

试题解析:(1)函数fx)在[1,+∞)上是增函数.

任取x1,x2∈[1,+∞,x1<x2,

fx1-fx2=,

∵x1-x2<0,x1+1)(x2+1>0,

所以fx1-fx2<0,fx1<fx2,

所以函数fx)在[1,+∞)上是增函数.

2)由(1)知函数fx)在[1,4]上是增函数,最大值f4=,最小值f1=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数定义域为,若对于任意的,都有,且时,有.

(1)判断并证明函数的奇偶性;

(2)判断并证明函数的单调性;

(3)设,若,对所有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,A、B两点极坐标分别为(1,π)、(1,0).
(1)求曲线C的参数方程;
(2)在曲线C上取一点P,求|AP|2+|BP|2的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600.

1设一次订购件,服装的实际出厂单价为元,写出函数的表达式;

2当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x),满足当x>0时,f(x)>1,且对任意的x,y,有

(1)的值;

(2)求证:对任意x,都有f(x)>0;

(3)解不等式f(32x)>4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,经过点的直线与椭圆相交于两点,已知的周长为

(1)求椭圆的方程;

(2)若,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)为二次函数,且

(1)求f(x)的表达式;

(2)判断函数在(0,+∞)上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是⊙O的直径,直线AF交⊙O于F(不与B重合),直线EC与⊙O相切于C,交AB于E,连接AC,且∠OAC=∠CAF,求证:

(1)AF⊥EC;
(2)若AE=5,AF=2,求AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切. 是椭圆的右顶点与上顶点,直线与椭圆相交于两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)当四边形面积取最大值时,求的值.

查看答案和解析>>

同步练习册答案