¶ÔÓÚº¯Êýf£¨x£©£¬g£¨x£©£¬h£¨x£©£¬Èç¹û´æÔÚʵÊýa£¬b£¬Ê¹µÃh£¨x£©=af£¨x£©+bg£¨x£©£¬ÄÇô³Æh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨1£©¸ø³öÈçÏÂÁ½×麯Êý£¬ÊÔÅжÏh£¨x£©ÊÇ·ñ·Ö±ðΪf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬²¢ËµÃ÷ÀíÓÉ£®
µÚÒ»×飺£»
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÒÑÖªµÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¶ÔÓÚµÚÒ»×飺ÀûÓúͽǹ«Ê½¼´¿ÉµÃµ½£¬¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬ÀûÓùØÓÚa£¬bµÄ·½³Ì×éÎ޽⼴¿ÉµÃ³öh£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©Ïȵõ½h£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÀûÓû»ÔªË¼Ïë½áºÏ¶þ´Îº¯ÊýµÄÐÔÖʼ´¿ÉÇóµÃʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£¬¿ÉµÃh£¨x£©=ax+£¬ÔÙ½áºÏº¯Êýh£¨x£©µÄÐÔÖÊÀûÓúã³ÉÁ¢ÎÊÌâµÄ½â·¨¼´¿ÉÇóµÃʵÊýbµÄÈ¡Öµ·¶Î§£®
½â´ð£º½â£º£¨1£©µÚÒ»×飺£»
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃ=asinx+bcosx£¬
ÓÉÓÚ¹ÊÉÏʽ³ÉÁ¢£¬
¼´h£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
Èôh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬ÔòÓУº
´æÔÚʵÊýa£¬b£¬Ê¹µÃx2-x+1=a£¨x2-x£©+b£¨x2+x+1£©£¬
Ôò£ºx2-x+1=£¨a+b£©x2-£¨a-b£©x+b£¬
¡àÕâÊDz»¿ÉÄܳÉÁ¢µÄ£¬
¼´h£¨x£©²»Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®
Ôò£ºh£¨x£©=2log2x+log0.5x=log2x£¬µ±x¡Ê[2£¬4]ʱ£¬1¡Üh£¨x£©¡Ü2£¬
Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬
¼´-t£¾3h2£¨x£©+2h£¨x£©£¬¼´ÒªÇó-t£¾3h2£¨x£©+2h£¨x£©×îСֵ¼´¿É£¬
-t£¾5£¬¡àt£¼-5
¡àʵÊýtµÄÈ¡Öµ·¶Î§t£¼-5£®
£¨3£©ÓÉÒÑÖª£¬µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®
µÃ£ºh£¨x£©=ax+£¬
Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
¼´ax+¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬
bҪСÓÚµÈÓÚax+µÄ×îСֵ¼´¿É£¬
¼´b¡Ü2£¬¼´£¬
ÓÉÓÚa¡Ê[1£¬2]£¬¡à£¬µÃ³ö£º0£¼b¡Ü4
¡àʵÊýbµÄÈ¡Öµ·¶Î§ÊÇ0£¼b¡Ü4£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éº¯Êý½âÎöʽµÄÇó½â¼°³£Ó÷½·¨¡¢º¯Êýºã³ÉÁ¢ÎÊÌâ¡¢Èý½Ç±ä»»¡¢²»µÈʽµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ï룬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼×¡¢ÒÒÁ½¹«Ë¾Í¬Ê±¿ª·¢Í¬Ò»ÖÖвúÆ·£¬¾­²âË㣬¶ÔÓÚº¯Êýf£¨x£©¡¢g£¨x£©ÒÔ¼°ÈÎÒâµÄx¡Ý0£¬µ±¼×¹«Ë¾Í¶ÈëxÍòÔª×÷Ðû´«Ê±£¬ÈôÒÒ¹«Ë¾Í¶ÈëµÄÐû´«·ÑСÓÚf£¨x£©ÍòÔª£¬ÔòÒÒ¹«Ë¾¶ÔÕâһвúÆ·µÄ¿ª·¢ÓÐʧ°ÜµÄ·çÏÕ£¬·ñÔòûÓÐʧ°ÜµÄ·çÏÕ£»µ±ÒÒ¹«Ë¾Í¶ÈëxÍòÔª×÷Ðû´«Ê±£¬Èô¼×¹«Ë¾Í¶ÈëµÄÐû´«·ÑСÓÚg£¨x£©ÍòÔª£¬Ôò¼×¹«Ë¾¶ÔÕâһвúÆ·µÄ¿ª·¢ÓÐʧ°ÜµÄ·çÏÕ£¬·ñÔòûÓÐʧ°ÜµÄ·çÏÕ£®
£¨¢ñ£©ÊÔ½âÊÍf£¨0£©=10£¬g£¨0£©=20µÄʵ¼ÊÒâÒ壻
£¨¢ò£©Éèf(x)=
1
4
x+10£¬g(x)=
x
+20
£¬¼×¡¢ÒÒ¹«Ë¾ÎªÁ˱ÜÃâ¶ñÐÔ¾ºÕù£¬¾­¹ýЭÉÌ£¬Í¬ÒâÔÚË«·½¾ùÎÞʧ°Ü·çÏÕµÄÇé¿öϾ¡¿ÉÄÜÉÙµØͶÈëÐû´«·ÑÓã¬Îʼס¢ÒÒÁ½¹«Ë¾¸÷ӦͶÈë¶àÉÙÐû´«·Ñ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•º¼ÖÝһģ£©¶ÔÓÚº¯Êý f£¨x£©Óë g£¨x£©ºÍÇø¼äE£¬Èç¹û´æÔÚx0¡ÊE£¬Ê¹|f£¨x0£©-g£¨x0£©|£¼1£¬ÔòÎÒÃdzƺ¯Êý f£¨x£©Óë g£¨x£©ÔÚÇø¼äEÉÏ¡°»¥Ïà½Ó½ü¡±£®ÄÇôÏÂÁÐËù¸øµÄÁ½¸öº¯ÊýÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏ¡°»¥Ïà½Ó½ü¡±µÄÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©ºÍÇø¼äD£¬Èç¹û´æÔÚΨһx0¡ÊD£¬Ê¹|f£¨x0£©-g£¨x0£©|¡Ü2£¬Ôò³Æº¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼äDÉϵġ°ÓѺú¯Êý¡±£®ÏÖ¸ø³öÁ½¸öº¯Êý£ºÔòº¯Êýf£¨x£©Óëg£¨x£©ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏΪ¡°ÓѺú¯Êý¡±µÄÊÇ
¢Ú
¢Ú
£®£¨ÌîÕýÈ·µÄÐòºÅ£©
¢Ùf£¨x£©=x2£¬g£¨x£©=2x-4£» 
¢Úf£¨x£©=2
x
£¬g£¨x£©=x+3£»
¢Ûf£¨x£©=e-x£¬g£¨x£©=-
1
x
£»
¢Üf£¨x£©=lnx£¬g£¨x£©=x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚº¯Êýf£¨x£©£¬g£¨x£©£¬h£¨x£©£¬Èç¹û´æÔÚʵÊýa£¬b£¬Ê¹µÃh£¨x£©=af£¨x£©+bg£¨x£©£¬ÄÇô³Æh£¨x£©Îªf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£®
£¨1£©¸ø³öÈçÏÂÁ½×麯Êý£¬ÊÔÅжÏh£¨x£©ÊÇ·ñ·Ö±ðΪf£¨x£©£¬g£¨x£©µÄÏßÐÔÉú³Éº¯Êý£¬²¢ËµÃ÷ÀíÓÉ£®
µÚÒ»×飺f(x)=sinx£¬g(x)=cosx£¬h(x)=sin(x+
¦Ð
3
)
£»
µÚ¶þ×飺f£¨x£©=x2-x£¬g£¨x£©=x2+x+1£¬h£¨x£©=x2-x+1£®
£¨2£©ÒÑÖªf£¨x£©=log2x£¬g£¨x£©=log0.5xµÄÏßÐÔÉú³Éº¯ÊýΪh£¨x£©£¬ÆäÖÐa=2£¬b=1£®Èô²»µÈʽ3h2£¨x£©+2h£¨x£©+t£¼0ÔÚx¡Ê[2£¬4]ÉÏÓн⣬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£»
£¨3£©ÒÑÖªf(x)=x£¬g(x)=
1
x
£¬x¡Ê[1£¬10]
µÄÏßÐÔÉú³Éº¯Êýh£¨x£©£¬ÆäÖÐa£¾0£¬b£¾0£®Èôh£¨x£©¡Ýb¶Ôa¡Ê[1£¬2]ºã³ÉÁ¢£¬ÇóʵÊýbµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=a2x2£¨a£¾0£©£¬g£¨x£©=blnx£®
£¨1£©½«º¯Êýy=f£¨x£©Í¼ÏóÏòÓÒƽÒÆÒ»¸öµ¥Î»¼´¿ÉµÃµ½º¯Êýy=¦Õ£¨x£©µÄͼÏó£¬ÊÔд³öy=¦Õ£¨x£©µÄ½âÎöʽ¼°ÖµÓò£»
£¨2£©¹ØÓÚxµÄ²»µÈʽ£¨x-1£©2£¾f£¨x£©µÄ½â¼¯ÖеÄÕûÊýÇ¡ÓÐ3¸ö£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©¶ÔÓÚº¯Êýf£¨x£©Óëg£¨x£©¶¨ÒåÓòÉϵÄÈÎÒâʵÊýx£¬Èô´æÔÚ³£Êýk£¬m£¬Ê¹µÃf£¨x£©¡Ýkx+mºÍg£¨x£©¡Ükx+m¶¼³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+mΪº¯Êýf£¨x£©Óëg£¨x£©µÄ¡°·Ö½çÏß¡±£®Éèa=
2
2
£¬b=e£¬ÊÔ̽¾¿f£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°·Ö½çÏß¡±£¿Èô´æÔÚ£¬Çó³ö¡°·Ö½çÏß¡±µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸