精英家教网 > 高中数学 > 题目详情
方程3-x=3-x2
 
个实数解.
考点:根的存在性及根的个数判断
专题:函数的性质及应用
分析:将方程的解的问题转化为2个函数的交点问题,通过图象得出结论.
解答: 解:令f(x)=3-x,g(x)=3-x2
画出函数f(x),g(x)的图象,如图示:

∴函数f(x),g(x)有2个交点,
故方程有2个解,
故答案为:2.
点评:本题考查了方程的根的问题,考查了转化思想,数形结合思想,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两个等差数列{an},{bn},
a1+a2+…+an
b1+b2+…+bn
=
7n+2
n+3
,则
a5
b5
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x-y≥0
2x+y≤2
y≥0
x+y≤a
表示的平面区域不能构成三角形,则a的范围是(  )
A、1<a<
4
3
B、1<a≤
4
3
C、1≤a≤
4
3
D、1≤a<
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,其中n∈N*
(1)若数列{an}是等比数列,求实数t的值;
(2)设各项均不为0的数列{cn}中,所有满足ci•ci+1<0的整数i的个数称为这个数列{cn}的“积异号数”,令cn=
nan-4
nan
(n∈N*),在(1)的条件下,求数列{cn}的“积异号数”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-a
x2+2
,其中a∈[-1,1],若a=0,t∈[-1,1],求满足f(t)+f(1-t2)>0的实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-2,2)上的奇函数,且在(-2,2)上的减函数,若函数f(x)满足:f(m-1)+f(2m-1)>0,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos
π
2
x+
1
x-1
,则f(x)在[-4,6]上所有零点的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x0满足f(x0)=x0,则称x=x0为f(x)的不动点.已知函数f(x)=x3+bx+3,其中b为常数.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若存在一个实数x0,使得x=x0既是f(x)的不动点,又是f(x)的极值点.求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x2+x(-1≤x≤3)的值域.

查看答案和解析>>

同步练习册答案