精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为

1)分别求曲线的极坐标方程和曲线的直角坐标方程;

2)设直线交曲线 两点,交曲线 两点,求线段的长.

【答案】(Ⅰ)曲线 ,曲线 .(Ⅱ) .

【解析】试题分析:
)由 ,能求出曲线C1的极坐标方程,曲线C2的参数方程消去参数能求出曲线C2的普通方程,从而能求出曲线C2的极坐标方程.

(Ⅱ)联立直线与圆的方程,求交点坐标,计算 的长,从而根据计算可得.

试题解析:(Ⅰ)曲线的普通方程为,即

曲线的极坐标方程为,即

因为曲线的极坐标方程为,即

故曲线的直角坐标方程为,即

(Ⅱ)直线的极坐标方程为,化为直角坐标方程得

.

. 

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=(
A.0
B.﹣100
C.100
D.10200

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为矩形,PA⊥平面ABCD,PA=AB=2,AD=1,点M为PC中点,过A、M的平面α与此四棱锥的面相交,交线围成一个四边形,且平面α⊥平面PBC.

(1)在图中画出这个四边形(不必说出画法和理由);
(2)求平面α与平面ABM所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,AD=1,CD=2,AC=
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,且满足b2﹣a2=ac,则 的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 若Sn=2an﹣3n.
(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.

查看答案和解析>>

同步练习册答案