【题目】在平面直角坐标系中,曲线: (为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为.
(1)分别求曲线的极坐标方程和曲线的直角坐标方程;
(2)设直线交曲线于, 两点,交曲线于, 两点,求线段的长.
科目:高中数学 来源: 题型:
【题目】已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=( )
A.0
B.﹣100
C.100
D.10200
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四棱锥P﹣ABCD的底面为矩形,PA⊥平面ABCD,PA=AB=2,AD=1,点M为PC中点,过A、M的平面α与此四棱锥的面相交,交线围成一个四边形,且平面α⊥平面PBC.
(1)在图中画出这个四边形(不必说出画法和理由);
(2)求平面α与平面ABM所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和为Sn .
(Ⅰ)求an;
(Ⅱ)设bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣(m+1)x+m,g(x)=﹣(m+4)x﹣4+m,m∈R.
(1)比较f(x)与g(x)的大小;
(2)解不等式f(x)≤0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 若Sn=2an﹣3n.
(Ⅰ)求证:数列{an+3}是等比数列,并求出数列{an}的通项an;
(Ⅱ)求数列{nan}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间和极值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com