精英家教网 > 高中数学 > 题目详情

【题目】与定点的距离和它到直线的距离的比是常数,设点的轨迹为曲线.

1)求曲线的方程;

2)过点的直线与曲线交于两点,设的中点为两点为曲线上关于原点对称的两点,且),求四边形面积的取值范围.

【答案】(1)(2).

【解析】

1)设出点的坐标,根据题意,列出方程,整理化简即可求得动点的轨迹方程;

2)设出直线的方程,利用弦长公式求得,再利用,建立直线之间的联系,再利用点到直线的距离,以及面积公式,将四边形面积表示为函数形式,求该函数的值域即可.

1)设动点,则到直线的距离

由题可知:,即可得

两边平方整理可得:

故曲线的方程为:.

(2)因为,故两点不可能重合,

则直线的斜率不可能为0

故可设直线方程为

联立椭圆方程

可得

两点坐标分别为

则可得

故可得

因为,故可得四点共线,

故可得.

不妨设直线方程为

联立直线与椭圆方程

可得

,即

,即

则点到直线的距离为:

代入上式即可得:

又根据弦长公式可得:

故四边形面积

因为,则

.

故四边形面积的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,扇形AOB是一个观光区的平面示意图,其中圆心角∠AOB为,半径OA为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A到出口B的观光道路,道路由弧AC、线段CD及线段DB组成,其中D在线段OB上,且CD∥AO.设∠AOC=θ.

(1)用θ表示CD的长度,并写出θ的取值范围;

(2)当θ为何值时,观光道路最长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数在定义域上是单调递增函数,求的取值范围;

2)若恒成立,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足.其中星等为的星的亮度为.已知心宿二的星等是1.00.“天津四的星等是1.25.“心宿二的亮度是天津四倍,则与最接近的是(较小时, )

A.1.24B.1.25C.1.26D.1.27

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】造纸术是我国古代四大发明之一.纸张的规格是指纸张制成后,经过修整切边,裁成一定的尺寸.现在我国采用国际标准,规定以等标记来表示纸张的幅面规格.复印纸幅面规格只采用系列和系列,其中系列的幅面规格为:①规格的纸张的幅宽(以表示)和长度(以表示)的比例关系为;②将纸张沿长度方向对开成两等分,便成为规格.纸张沿长度方向对开成两等分,便成为规格,,如此对开至规格.现有纸各一张.纸的面积为,则这9张纸的面积之和等于______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数,为自然对数的底数.

(Ⅰ)若在区间上的最小值为1,求的值;

(Ⅱ)若“,使”为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是两条异面直线,直线都垂直,则下列说法正确的是( )

A. 平面,则

B. 平面,则,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,平面,四边形为平行四边形,

1)若,求证:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三个条件中任选一个补充在下面问题中,并加以解答.

已知的内角ABC的对边分别为abc,若______,求的面积S.

查看答案和解析>>

同步练习册答案