精英家教网 > 高中数学 > 题目详情

【题目】打赢扶贫攻坚战,到2020年全面建成小康社会,是中国共产党向全世界和全国人民的承诺.一贫困户在政府扶持下结合地方特色联合当地几户贫困户创办一家农产品公司.为了振兴乡村,打好扶贫攻坚战,某市党政府开展了地标特产展销会.该公司拟定在2020年元旦展销期间举行产品促销活动,经测算该产品的年销量t万件(生产量与销量相等)与促销费用x万元满足已知2020年生产该产品还需投入成本4+t万元(不含促销费),促销费x满足当产品销量价格定为5/件,当产品销量价格定为/(其中a为正常数).

(1)试将2020年该产品的利润y万元表示为促销费费x万元的函数;

(2)2020年该公司促销费投入多少万元时,公司利润最大?

【答案】122万元

【解析】

1)根据题意讨论的取值范围,由利润收入投入,即可求出关系式.

2)根据分段函数的单调性以及基本不等式即可求出最值.

解:(1)依题意当

时,

所以.

(2) 为单调增函数,

时,,当且仅当

该公司促销费投入2万元时,公司利润最大为6+a万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数,若已知其在内只取到一个最大值和一个最小值,且当时函数取得最大值为;当,函数取得最小值为

1)求出此函数的解析式;

2)若将函数的图像保持横坐标不变纵坐标变为原来的得到函数,再将函数的图像向左平移个单位得到函数,已知函数的最大值为,求满足条件的的最小值;

3)是否存在实数,满足不等式?若存在,求出的范围(或值),若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试讨论极值点的个数;

(2)若函数的两个极值点为,且的导函数,设,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图所示的几何体中, 平面,且平面,正方形的边长为2为棱中点,平面分别与棱交于点.

(Ⅰ)求证:

)求证:平面平面

)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面为梯形,,且.

(1)求二面角的大小;

(2)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=.

(1)化简f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数的图像过点,且满足恒成立.

1)求的解析式;

2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题:对,不等式恒成立;命题,使得成立.

(1)若为真命题,求的取值范围;

(2)当时,若假,为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案