精英家教网 > 高中数学 > 题目详情

已知首项为的等比数列{an}是递减数列,其前n项和为Sn,且S1+a1,S2+a2,S3+a3成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)已知,求数列{bn}的前n项和

(I)an=a1=()n;(Ⅱ).

解析试题分析:(I){an}是一等比数列,且a1=.设等比数列{an}的公比为q,由S1+a1,S2+a2,S3+a3成等差数列,可得一个含公比q的方程,解这个方程便得公比q,从而得数列{an}通项公式. (Ⅱ)由题设及(I)可得:bn=anlog2an=-n?()n,由等差数列与等比数列的积或商构成的新数列,求和时用错位相消法.
试题解析:(I)设等比数列{an}的公比为q,由题知  a1=
又∵ S1+a1,S2+a2,S3+a3成等差数列,
∴ 2(S2+a2)=S1+a1+S3+a3
变形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3
q=+q2,解得q=1或q=,                   4分
又由{an}为递减数列,于是q=
∴an=a1=()n.                            6分
(Ⅱ)由于bn=anlog2an=-n?()n

于是
两式相减得:
.                      12分
考点:1.等差数列;2.等比数列的通项公式;3.错位相消法求和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

各项均为正数的数列{an}满足an2=4Sn-2an-1(n∈N*),其中Sn为{an}的前n项和.
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)是否存在正整数m、n,使得向量a=(2an+2,m)与向量b=(-an+5,3+an)垂直?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
①求数列的通项
②若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中,三个内角A,B,C的对边分别为,且A,B,C成等差数列,成等比数列,求证ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前项和为,已知.
(1)求
(2)若从中抽取一个公比为的等比数列,其中,且.
①当取最小值时,求的通项公式;
②若关于的不等式有解,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,满足
(1)已知,求数列所满足的通项公式;
(2)求数列 的通项公式;
(3)己知,设,常数,若数列是等差数列,记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足).
(1)若数列是等差数列,求它的首项和公差;
(2)证明:数列不可能是等比数列;
(3)若),试求实数的值,使得数列为等比数列;并求此时数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的前n项和为,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列前n项和为,且,令.求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为等比数列,是等差数列,
(Ⅰ)求数列的通项公式及前项和
(Ⅱ)设,其中,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案