【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量 =(c+a,b), =(c﹣a,b﹣c),且 ⊥ .
(1)求角A的大小;
(2)若a=3,求△ABC周长的取值范围.
【答案】
(1)解:∵ ⊥ .∴ =(c+a)(c﹣a)+b(b﹣c)=c2﹣a2+b2﹣bc=0,化为:c2+b2﹣a2=bc.
∴cosA= = ,A∈(0,π).
∴A=
(2)解:由正弦定理可得: = = =2 ,
∴b=2 sinB,c=2 sinC,
∴a+b+c=3+2 (sinB+sinC)=3+2 (sinB+sinC)=3+2 (sin( )+sinC)
=6sin +3,
∵C∈ ,∴ ∈ ,
∴sin ∈ ,
∴a+b+c∈(6,9]
【解析】(1)由 ⊥ .可得 =(c+a)(c﹣a)+b(b﹣c)=0,化为:c2+b2﹣a2=bc.利用余弦定理即可得出.(2)由正弦定理可得: = = =2 ,b=2 sinB,c=2 sinC,利用和差公式可得:a+b+c=3+2 (sinB+sinC)=6sin +3,再利用三角函数的单调性值域即可得出.
科目:高中数学 来源: 题型:
【题目】已知f(x),g(x)都是定义在R上的函数,且满足以下条件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
若 ,则a= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.
喜欢数学课程 | 不喜欢数学课程 | 合计 | |
男生 | |||
女生 | |||
合计 |
(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;
(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,求抽取的学生中至少有1名是女生的概率..
附:,其中.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)是定义在(﹣∞,+∞)上的增函数,实数a使得f(1﹣ax﹣x2)<f(2﹣a)对于任意x∈[0,1]都成立,则实数a的取值范围是( )
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2 )
D.[0,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,椭圆C: (a>b>0)的离心率为,且过点(1, ).过椭圆C的左顶点A作直线交椭圆C于另一点P,交直线l:x=m(m>a)于点M.已知点B(1,0),直线PB交l于点N.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若MB是线段PN的垂直平分线,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个多面体的直观图(图1)及三视图(图2)如图所示,其中M,N分别是AF,BC的中点
(1)求证:MN∥平面CDEF:
(2)求二面角A﹣CF﹣B的余弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解下列各题:
(1)求下列椭圆5x2+9y2=100的焦点和顶点的坐标;
(2)求抛物线 y2﹣6x=0的焦点坐标,准线方程和对称轴;
(3)求焦点在x轴上,两顶点间的距离是8,e= 的 双曲线的标准方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com