精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=4cosxsinx+-1

1)求fx)的最小正周期和单调递减区间;

2)将y=fx)图象上所有的点向右平行移动个单位长度,得到y=gx)的图象.若gx)在(0m)内是单调函数,求实数m的最大值.

【答案】(1)最小正周期为π,减区间为[kπ+kπ+]kZ.(2)

【解析】

(1)利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性和单调性求得fx)的最小正周期和单调递减区间.

(2)利用函数yAsin(ωx+)的图象变换规律,求得gx)的解析式,再利用正弦函数的单调性,求得m的最大值.

(1)依题意,得函数fx)=4cosxsin(x)﹣1=4cosxsinxcosx)﹣1sin2x+2cos2x﹣1

=2(sin2xcos2x)=2sin(2x).

它的最小正周期为π.

令2kπ2x2kπ,求得kπxkπ

故函数的减区间为[kπkπ],k∈Z.

(2)将yfx)图象上所有的点向右平行移动个单位长度,得到ygx)=2sin(2x)的图象.

gx)在(0,m)内是单调函数,则gx)在(0,m)内是单调增函数,

∴2m,求得m,故m的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数内有极值.

(1)求实数a的取值范围;

(2)x1(0,1),x2(1,+).求证:f(x2)-f(x1)>e+2-.注:e是自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC. (Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校600名文科学生参加了425日的三调考试,学校为了了解高三文科学生的数学、外语情况,利用随机数表法从抽取100名学生的成绩进行统计分析,将学生编号为000,001,002,…599

12 56 85 99 26 96 96 68 27 31 05 03 72 93 15 57 12 10 14 21 88 26 49 81 76

55 59 56 35 64 38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 23 83 01 30 30

16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

(1)若从第6行第7列的数开始右读,请你一次写出最先抽出的5个人的编号(上面是摘自随机数表的第4行到第7行);

(2)抽出的100名学生的数学、外语成绩如下表:

外语

及格

数学

8

m

9

9

n

11

及格

8

9

11

若数学成绩优秀率为35%,求m,n的值;

(3)在外语成绩为良的学生中,已知m≥12,n≥10,求数学成绩优比良的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为80,9090,100100,110110,120120,130,由此得到两个班测试成绩的频率分布直方图:

(1)完成下面2×2列联表,你能有97.5的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;

成绩小于100分

成绩不小于100分

合计

甲班

50

乙班

50

合计

100

(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?

附:

,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则下列结论正确的有( )

A. 函数的最大值为2;

B. 函数的图象关于点对称;

C. 函数的图象左移个单位可得函数的图象;

D. 函数的图象与函数的图象关于轴对称;

E. 若实数使得方程上恰好有三个实数解,则一定有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,函数的最大值为,最小值为,求的值;

(2)当时,函数的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在冬季,由于受到低温和霜冻的影响,蔬菜的价格会随着需求量的增加而提升.已知某供应商向饭店定期供应某种蔬菜,其价格会随着日需求量的增加而上升,具体情形统计如下表所示:

(1)根据上表中的数据进行判断,哪一个更适合作为日供应量与单价之间的回归方程;(给出判断即可,不必说明理由);

(2)根据(1)的判断结果以及参考数据,建立关于的回归方程;

(3)该地区有个酒店,其中个酒店每日对蔬菜的需求量在以下,个酒店对蔬菜的需求量在以上,从这个酒店中任取个进行调查,求恰有个酒店对蔬菜需求量在以上的概率.

参考公式及数据:

对于一组数据...,其回归直线的斜率和截距的最小二乘估计分别为

其中:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是在竖直平面内的一个“通道游戏”,图中竖直线段和斜线段都表示通道,并且在交点处相通,假设一个小弹子在交点处向左或向右是等可能的.若竖直线段有一条的为第一层,有两条的为第二层,……,依此类推,现有一颗小弹子从第一层的通道里向下运动.则该小弹子落入第四层从左向右数第3个竖直通道的概率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案