精英家教网 > 高中数学 > 题目详情

如图,在平面四边形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形,
(1)将四边形ABCD面积S表示为θ的函数;
(2)求S的最大值及此时θ角的值.

解:(1)△ABD的面积S=AB•AD•sinA=×1×1×sinθ=sinθ,
∵△BDC是正三角形,则△BDC面积=BD2
由△ABD及余弦定理可知:BD2=12+12+2•1•1•cosθ=2-2cosθ,
于是四边形ABCD面积S=sinθ+(2-2cosθ),
整理得:S=+sin(θ-)其中0<θ<π;
(2)由(1)得到的S=+sin(θ-),
∵0<θ<π,∴-<θ-
则当θ-=时,S取得最大值1+,此时θ=+=
分析:(1)四边形ABCD的面积分为两三角形面积之和来求,三角形ABD的面积由AB,AD及sinA的值,利用三角形的面积公式可表示出,三角形BCD为等边三角形,其面积为BD2,接着由AB,AD及cosA的值,利用余弦定理表示出BD2,可表示出三角形BCD的面积,两者相加去括号后,利用两角和与差的正弦函数公式化简可表示出四边形ABCD的面积,并求出此时θ的范围;
(2)由(1)表示出的S关系式,根据θ的范围,求出的范围,再由正弦函数的图象与性质可得出面积S的最大值,以及此时θ的度数.
点评:此题考查了三角形的面积公式,余弦定理,等边三角形的性质,两角和与差的正弦函数公式以及正弦函数的定义域和值域,综合性比较强,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,若AB=2,CD=1,则(
AC
+
DB
)•(
AB
+
CD
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC,设点F为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求直线BF与平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC,设点F为棱AD的中点.
(1)求证:DC⊥平面ABC;
(2)求直线BF与平面ACD所成角的余弦值.
精英家教网

查看答案和解析>>

同步练习册答案