精英家教网 > 高中数学 > 题目详情
9.设函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=2x+1,则数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和为(  )
A.3-$\frac{n+3}{{2}^{n}}$B.3-$\frac{n+2}{{2}^{n}}$C.3+$\frac{n-1}{{2}^{n}}$D.$\frac{3}{2}$-$\frac{n+1}{{2}^{n+1}}$

分析 函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=mxm-1+a=2x+1,可得m=2,a=1.f(x)=x2+x.$\frac{f(n)}{n•{2}^{n}}$=$\frac{n+1}{{2}^{n}}$.再利用“错位相减法”与等比数列的前n项和公式即可得出.

解答 解:函数f(x)=xm+ax(m,a为常数)的导数为f′(x)=mxm-1+a=2x+1,
∴m=2,a=1.
∴f(x)=x2+x.
∴$\frac{f(n)}{n•{2}^{n}}$=$\frac{n+1}{{2}^{n}}$.
数列{$\frac{f(n)}{n•{2}^{n}}$}(n∈N*)的前n项和Sn=1+$\frac{3}{{2}^{2}}$+$\frac{4}{{2}^{3}}$+…+$\frac{n+1}{{2}^{n}}$,
$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$+$\frac{n+1}{{2}^{n+1}}$,
∴$\frac{1}{2}{S}_{n}$=$1+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{1}{2}+\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n+1}{{2}^{n+1}}$=$\frac{3}{2}$-$\frac{n+3}{{2}^{n+1}}$,
∴Sn=3-$\frac{n+3}{{2}^{n+1}}$.
故选:A.

点评 本题考查了“错位相减法”与等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某单位有职工750人,其中青年职工420人,中年职工210人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为(  )
A.7B.15C.25D.35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知幂函数y=f(x)的图象过点$(2,2\sqrt{2})$,则f(9)=27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知0<m<n<1,则指数函数①y=mx,②y=nx的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x-alnx(x>0,a∈R)有两个零点x1,x2,且x1<x2
(1)求a的取值范围;
(2)证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,首项a1=-1,数列{bn}满足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求数列{an}的通项公式;
(2)设cn=(-1)nan,求数列{cn}的前2n项和T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x,y∈R+,x+y=1,则$\frac{x}{y}$+$\frac{1}{x}$的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点(1,1)且$\frac{b}{a}$=$\sqrt{2}$的双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=${x}^{-\frac{1}{3}}$是(  )
A.奇函数B.偶函数
C.既不是奇函数,也不是偶函数D.既是奇函数,也是偶函数

查看答案和解析>>

同步练习册答案