精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在三棱锥中,.

(Ⅰ)求证:平面平面

(Ⅱ)为棱上一点,试确定点的位置,使得直线与平面所成角的正弦值为.

【答案】(Ⅰ)见解析;(Ⅱ) 为棱的中点

【解析】

(Ⅰ)由余弦定理得AC,由勾股定理得PAAC,由PABC,得PA⊥平面ABC,由此能证明平面ABC⊥平面PAC

(Ⅱ)设BC的中点为D,连结AD,以ABADAP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量能求出E为棱AC的中点.

(Ⅰ)在中,由余弦定理得

,即

平面平面

平面平面平面.

(Ⅱ)设的中点为,连接,又.

如图所示,以所在直线分别为轴,轴,轴,建立空间直角坐标系.

(),则

设平面的法向量为,则,令,可得

,设直线与平面所成角为

整理得为棱的中点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知原命题“如果,那么关于的不等式的解集为”,那么原命题、逆命题、否命题和逆否命题是假命题的共有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校进入高中数学竞赛复赛的学生中,高一年级有8人,高二年级有16人,高三年级有32人,现釆用分层抽样的方法从这些学生中抽取7人进行釆访.

1)求应从各年级分别抽取的人数;

2)若从抽取的7人中再随机抽取2人做进一步了解(注高一学生记为,高二学生记为,高三学生记为

①列出所有可能的抽取结果;

②求抽取的2人均为高三年级学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内装有大小相同的5个球,其中3个白球,2个黑球,从中一次摸出两个球.

1)共有多少个基本事件?

2)摸出的两个都是白球的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数()的导函数为.

(Ⅰ)当时,求的最小值;

(Ⅱ)若函数存在极值,试比较的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】连续投骰子两次得到的点数分别为mn,作向量mn),则(1,﹣1)的夹角成为直角三角形内角的概率是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)已知双曲线的中心在原点,焦点在x轴上,实轴长为4,渐近线方程为.求双曲线的标准方程;

2)过(1)中双曲线上一点P的直线分别交两条渐近于两点,且P是线段AB的中点,求证:为常数;

3)我们知道函数的图象是由双曲线的图象逆时针旋转45°得到的,函数的图象也是双曲线,请尝试写出曲线的性质(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程是为参数),把曲线C的横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线直线l的普通方程是,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.

1)求直线l的极坐标方程和曲线的普通方程;

2)记射线)与交于点A,与l交于点B,求的值.

查看答案和解析>>

同步练习册答案