精英家教网 > 高中数学 > 题目详情

【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.

×

×

×

×

×

×

85

×

×

×

×

×

×

Ⅰ)估计顾客同时购买乙和丙的概率;

Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;

Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?

【答案】(Ⅰ)0.2;(Ⅱ)0.3;(Ⅲ)丙

【解析】

试题分析:(1)从统计表可得,在这1000名顾客中,同时购买乙和丙的有200人,从而求得顾客同时购买乙和丙的概率.
(2)根据在甲、乙、丙、丁中同时购买3种商品的有300人,求得顾客顾客在甲、乙、丙、丁中同时购买3种商品的概率.
(3)在这1000名顾客中,求出同时购买甲和乙的概率、同时购买甲和丙的概率、同时购买甲和丁的概率,从而得出结论.

试题解析:

(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为=0.2.

(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.

所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3.

(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为=0.2,顾客同时购买甲和丙的概率可以估计为=0.6,顾客同时购买甲和丁的概率可以估计为=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

(1)求数列的通项公式;

(2)求证:数列是等差数列,求数列的通项公式;

(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为(单位:万件),依据销售统计数据发现形成如下营销趋势:(其中为常数,),已知万件,万件,万件.

(1)求的值,并写出满足的关系式;

(2)证明:逐月递增且控制在2万件内;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:

未使用节水龙头天的日用水量频数分布表

日用水量

频数

使用了节水龙头天的日用水量频数分布表

日用水量

频数

(Ⅰ)作出使用了节水龙头天的日用水量数据的频率分布直方图;

(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体中,OAC的中点,E是线段D1O上一点,且D1E=λEO.

(1)若λ=1,求异面直线DECD1所成角的余弦值;

(2)若平面CDE平面CD1Oλ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以表示.

(1)如果,求乙组同学单位时间内引体向上次数的平均数和方差;

(2)如果,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.

(注:方差,其中的平均数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在正方体的面对角线上运动,则下列四个命题:

③平面平面

④三棱锥的体积不变.

其中正确的命题序号是______

查看答案和解析>>

同步练习册答案