精英家教网 > 高中数学 > 题目详情
定义在(-1,1)上的函数f(x)=-5x+sinx,如果f(1-a)+f(1-a2)>0,则实数a的取值范围为
 
分析:函数f(x)=-5x+sinx且定义域为(-1,1),可判断此函数为奇函数,且在定义域内为单调递减函数,所以f(1-a)+f(1-a2)>0?f(1-a)>-f(1-a2),然后进行求解即可.
解答:解:∵f(x)=-5x+sinx,
∴f(-x)=5x-sinx=-(-5x+sinx)=-f(x),又x∈(-1,1)
∴f(x)为奇函数;
∴f(1-a)+f(1-a2)>0?f(1-a)>-f(1-a2)=f(a2-1),
又f′(x)=-5+cosx<0,
∴f(x)为减函数;
∴-1<1-a<a2-1<1,
解得:1<a<
2

故答案为:(1,
2
)
点评:此题考查了利用函数的单调性及奇偶性求解抽象函数的不等式,还考查了不等式的求解及集合的交集.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

①求函数f(x)的解析式;
②判断函数f(x)在(-1,1)上的单调性并用定义证明;
③解关于x的不等式f(log2x-1)+f(log2x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在(-1,1)上的奇函数,当x∈(0,1)时,f(x)=2x2-2x,求f(x)在(-1,1)上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0,>0.

(1)证明f(x)在[-1,1]上是增函数;

(2)解不等式f(x+)<f().

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨一中高一(上)期中数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年黑龙江省哈尔滨三中高一(上)段考数学试卷(解析版) 题型:解答题

函数f(x)=是定义在(-1,1)的奇函数,且f()=
(1)确定f(x)的解析式;
(2)判断函数在(-1,1)上的单调性;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

同步练习册答案