【题目】已知函数,若对任意,存在,使,则实数b的取值范围是
A. B. C. D.
【答案】C
【解析】∵函数f(x)(x>0)
∴f′(x)
若f′(x)>0,1<x<3,f(x)为增函数;若f′(x)<0,x>3或0<x<1,f(x)为减函数;
f(x)在x∈(0,2)上有极值,
f(x)在x=1处取极小值也是最小值f(x)min=f(1)=;
∵g(x)=x2﹣2bx+4=(x﹣b)2+4﹣b2,对称轴x=b,x∈[1,2],
当b<1时,g(x)在x=1处取最小值g(x)min=g(1)=1﹣2b=4=5﹣2b;
当1<b<2时,g(x)在x=b处取最小值g(x)min=g(b)=4﹣b2;
当b>2时,g(x)在[1,2]上是减函数,g(x)min=g(2)=4﹣4b+4=8﹣4b;
∵对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),
∴只要f(x)的最小值大于等于g(x)的最小值即可,
当b<1时, ≥5﹣2b,解得b≥,故b无解;当b>2时, ≥8﹣4b,解得b≥,
综上:b≥,
故答案为:C。
科目:高中数学 来源: 题型:
【题目】在中, , , , 是中点(如图1).将沿折起到图2中的位置,得到四棱锥.
(1)将沿折起的过程中, 平面是否成立?并证明你的结论;
(2)若与平面所成的角为60°,且为锐角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程.
(Ⅱ)若, 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按要求写出下列命题,并判断真假:
(1)命题:“在中,若则”的逆命题;
(2)命题:“若两个数的和为有理数,则这两个数都是有理数。”的否命题;
(3)命题:“若a≠0且b≠0,则ab≠0”的逆否命题;
(4)命题:“a=0或b=0,则a2+b2=0”的逆否命题;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 天气预报说明天下雨的概率为,则明天一定会下雨
B. 不可能事件不是确定事件
C. 统计中用相关系数来衡量两个变量的线性关系的强弱,若则两个变量正相关很强
D. 某种彩票的中奖率是,则买1000张这种彩票一定能中奖
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行抽样分析,得到下表(单位:人):
(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(Ⅱ)①现从所抽取的30岁以上的网民中,按“经常使用”与“偶尔或不用”这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出3人赠送优惠券,求选出的3人中至少有2人经常使用共享单车的概率.
②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用共享单车的人数为,求的数学期望和方差.
参考公式: ,其中.
参考数据:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com