精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是

A. 对分类变量XY,随机变量K2的观测值k越大,则判断“XY有关系的把握程度越小

B. 在回归直线方程=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量平均增加0.2个单位

C. 两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

D. 回归直线过样本点的中心(

【答案】A

【解析】A.对分类变量XY的随机变量K2的观测值k来说,k越大,“XY有关系”可信程度越大,因此不正确;

B.在线性回归方程=0.2x+0.8中,当x每增加1个单位时,预报量平均增加0.2个单位,正确;

C.两个随机变量相关性越强,则相关系数的绝对值越接近1,因此正确;

D.回归直线过样本点的中心( ,正确.

综上可知:只有A不正确.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】钝角三角形ABC的面积是 ,AB=1,BC= ,则AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数的图像有两个不同交点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆离心率为是椭圆的左、右焦点,以为圆心,为半径的圆和以为圆心、为半径的圆的交点在椭圆上.

(1)求椭圆的方程;

(2)设椭圆的下顶点为,直线与椭圆交于两个不同的点,是否存在实数使得以为邻边的平行四边形为菱形?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到市气象观测站与市博爱医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

110

210

310

410

510

610

昼夜温差 (°C)

10

11

13

12

8

6

就诊人数 ()

22

25

29

26

16

12

该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考数据:

.

参考公式:回归直线,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=(  )

A.7
B.12
C.17
D.34

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCD-A1B1C1D1中,EAB中点,FCD1中点.

(1)求证:EF∥平面ADD1A1

(2)求直线EF和平面CDD1C1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线关于轴对称,顶点在坐标原点,直线经过抛物线的焦点.

(1)求抛物线的标准方程;

(2)若不经过坐标原点的直线与抛物线相交于不同的两点 ,且满足,证明直线轴上一定点,并求出点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值与最小值之和为a2+a+1(a>1).

(1)求a的值;

(2)判断函数gx)=fx)-3在[1,2]的零点的个数,并说明理由.

查看答案和解析>>

同步练习册答案