精英家教网 > 高中数学 > 题目详情
17.如图:已知△ABC中,∠BAD=∠C,AB=4,BD=2,$\overrightarrow{BD}$=$\overrightarrow{m}$.
(1)试用$\overrightarrow{m}$表示$\overrightarrow{DC}$;
(2)过点D作DE∥AB交AC于点E.若S△ABD=3,求S△CDE

分析 (1)由已知得△ABD∽△CBA,从而得到CD=6,由此能用$\overrightarrow{m}$表示$\overrightarrow{DC}$.
(2)由S△ABD=3,解得sin∠ABD=$\frac{3}{4}$,过点D作DE∥AB交AC于点E,则sin∠EDC=sin∠ABD=$\frac{3}{4}$,DE=$\frac{AB×CD}{BC}$=3,由此能求出S△CDE

解答 解:(1)在△ABD和△CBA中,
∠B=∠B,∠BAD=∠C,
∴△ABD∽△CBA,
∴$\frac{AB}{BD}=\frac{BC}{AB}$,
∵AB=4,BD=2,∴$\frac{4}{2}=\frac{2+CD}{4}$,解得CD=6,
∵$\overrightarrow{BD}$=$\overrightarrow{m}$,∴$\overrightarrow{DC}=3\overrightarrow{BD}$=3$\overrightarrow{m}$.
(2)∵S△ABD=3,∴$\frac{1}{2}×AB×BD$×sin∠ABD=$\frac{1}{2}×4×2×sin∠ABD$=3,
解得sin∠ABD=$\frac{3}{4}$,
过点D作DE∥AB交AC于点E,则sin∠EDC=sin∠ABD=$\frac{3}{4}$,
$\frac{DE}{AB}=\frac{CD}{BC}$,∴DE=$\frac{AB×CD}{BC}$=$\frac{4×6}{8}$=3,
∴S△CDE=$\frac{1}{2}×DE×DC×sin∠EDC$=$\frac{1}{2}×3×6×\frac{3}{4}$=$\frac{27}{2}$.

点评 本题考查线段的向量表示,考查三角形面积的求法,是中档题,解题时要认真审题,注意三角形面积公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知点A(3,2),点M到F($\frac{1}{2}$,0)的距离比它到y轴的距离大$\frac{1}{2}$.
(1)求点M的轨迹方程;
(2)是否存在M,使|MA|+|MF|取得最小值?若存在,求此时点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知AB=AE=ED=BC,CD=CE,求∠E的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,已知∠DAE=10°,∠CAE=70°,∠DCA=60°,∠DCE=20°,则∠DEA=20°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=2cos(ωx-$\frac{π}{2}$)cos(${ωx+\frac{π}{6}}$)+2sin2ωx-1(ω>0),直线y=$\frac{1}{2}$与f(x)的图象交点之间最短距离为π.
(Ⅰ) 求f(x)的解析式及单调递增区间;
(Ⅱ)在△ABC中,角A、B、C所对的边分别是a、b、c若有(2a-c)cosB=bcosC,则求角B的大小以及f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.长方形ABCD中,4BE=BC,3AF=AC,那么阴影部分的面积是长方形ABCD的面积的几分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周四尺,高三尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图),米堆底部的弧长为4尺,米堆的高为3尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有(  )
A.7斛B.3斛C.9斛D.12斛

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设曲线f(x)=ax+ex在点(0,1)处的切线与直线x+y-1=0垂直,则实数a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与双曲线4y2-x2=1共渐近线,且过点(4,$\sqrt{3}$)的双曲线的标准方程为 (  )
A.y2-$\frac{x^2}{4}$=1B.x2-$\frac{y^2}{4}$=1C.$\frac{y^2}{4}-{x^2}$=1D.$\frac{x^2}{4}-{y^2}$=1

查看答案和解析>>

同步练习册答案