精英家教网 > 高中数学 > 题目详情

【题目】设函数 ),当点 是函数 图象上的点时,点 是函数 图象上的点.
(1)写出函数 的解析式;
(2)把 的图象向左平移a个单位得到 的图象,函数 ,是否存在实数 ,使函数 的定义域为 ,值域为 .如果存在,求出 的值;如果不存在,说明理由;
(3)若当 时,恒有 ,试确定a的取值范围.

【答案】
(1)解:设点Q的坐标为
,即 .
在函数 图象上,
,即 ,
.
故答案为:.
(2)解:
,故
上单调递增, ,即 的两相异的非负的实数
x 2 + 2 x = x ,解得 m = 0 , n = 1。
(3)解:函数
由题意 ,则
,且


对称轴为x=2a,
,则 上为增函数,
函数 上为减函数,
从而
,则
.
【解析】(1)根据已知条件设出点O的坐标,分别将横坐标和纵坐标代入函数f(x)表达式中,即可求出y=g(x)的表达式。
(2)根据y=g(x)的图像得出y=h(x)的图像,再将函数h(x)打入函数F(x)的表达式中判断值域、定义域的取值范围。
(3)要判断恒成立,即判断.
【考点精析】通过灵活运用函数的值域,掌握求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.

求证:
(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判定下列函数的奇偶性.
(1)f(x)=
(2)f(x)=
(3)f(x)=
(4)f(x)=|x+1|+|x-1|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC所在平面外有一点P,D,E分别是PB与AB上的点,过D,E作平面平行于BC,试画出这个平面与其他各面的交线,并说明画法的依据.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 )是定义域为R的奇函数.
(1)求k的值;
(2)若 ,不等式 恒成立,求实数t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A= ,B= ,从A到B的对应关系f不是映射的是( )
A.f:x→y=
B.f:x→y=
C.f:x→y=
D.f:x→y=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2+bx+c=0实根的个数(重根按一个计).
(1)求方程x2+bx+c=0有实根的概率;
(2)(理)求ξ的分布列和数学期望 (文)求P(ξ=1)的值
(3)(理)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,宜城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院共有30个猴宝宝降生,其中10个是“二孩”宝宝. (I)从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询.
①在市第一医院出生的一孩宝宝中抽取多少个?
②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率;
(Ⅱ)根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?
附:

P(k2>k0

0.4

0.25

0.15

0.10

k0

0.708

1.323

2.072

2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】比较下列各题中两个幂的值的大小:

(1)2.3,2.4

(2)

(3)(-0.31) ,0.35.

查看答案和解析>>

同步练习册答案