精英家教网 > 高中数学 > 题目详情
要计算函数y=
x2-3x+2006,x>2
x+1,-2≤x≤2
x3+2015,x<-2
的值,请用If语句描述算法,并算出输出的函数值大于2016时输入的x的范围.
考点:伪代码
专题:算法和程序框图
分析:(1)根据题目已知中分段函数的解析式,然后根据分类标准,设置两个判断框的并设置出判断框中的条件,再由函数各段的解析式,确定判断框的“是”与“否”分支对应的操作,由此即可画出流程图,再编写满足题意的程序.
(2)分类讨论若输入的x>2,x<-2,-2≤x≤2,即可得到输出的函数值大于2016时输入的x的范围.
解答: 解:(1)IF语句
输入x
IF x>2 then
       y=x2-3x+2006
else
   if x<-2 then
       y=x3+2015
   else
      y=x+1
  end if
end if
输出 y
(2)若输入的x>2,则x2-3x+2006>2016,
解得x>5或x<-2,所以x>5.
若输入的x<-2,则x3+2015>2016,解得x>1,不合.
若输入的-2≤x≤2,则x+1>2016,解得x>2015,不合.
所以输入的x的范围为(5,+∞).
点评:本题考查了设计程序框图解决实际问题.主要考查编写程序解决分段函数问题,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

十进制的四位自然数的反序数是指千位数字与个位数字位置对调,百位数字与十位数字位置对调,例如4852的反序数就是2584.1955年,卡普耶卡研究了对四位自然数的一种变换:任给出四位数a0,用a0的四个数字由大到小重新排列成一个四位数m,再用数m减去m的反序数n得出数a1=m-n,然后继续对a1重复上述变换,得数a2,…,如此进行下去,卡普耶卡发现,无论a0是怎样的四位数,只要四个数字不全相同,最多进行k此上述变换,就会出现前后相同的四位数t.请你研究两个十进制四位数6264和3996,可得四位数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-4:极坐标与参数方程选讲:在平面直角坐标系xOy中,直线l的参数方程为
x=-2+
1
2
t
y=
3
+
3
2
t
(t为参数),以该直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系下,圆C的极坐标方程为ρ=-2cosθ+2
3
sinθ
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)设点P的直角坐标为(-2,
3
),直线l与圆C相交于两点A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点分别为A、B.椭圆长半轴的长为2,离心率为e=
1
2

(1)求椭圆的方程;
(2)设点P在直线上x=4不同于点(4,0)的任意一点,若直线AP、BP分别与椭圆相交于异于A、B的点M、N,证明:点B在以MN为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图的程序运行之后输出值为16,那么输入的值x应该是(  )
A、3或-3B、-5
C、5或-3D、5或-5

查看答案和解析>>

科目:高中数学 来源: 题型:

某校的学生记者团由理科组和文科组构成,具体数据如下表所示:
组别理科文科
性别男生女生男生女生
人数4431
学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.
(Ⅰ)求理科组恰好记4分的概率?
(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

求y=
k2
x
+x(k>0)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)是奇函数,且在(-∞,0)上是增函数,又f(-2)=0,则满足(x+1)f(x-1)>0的x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M与两个定点(1,0),(-2,0)的距离的比为
1
2
,则点M的轨迹所包含的图形面积等于(  )
A、9πB、8πC、4πD、π

查看答案和解析>>

同步练习册答案