精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求的极坐标方程;

(2)若曲线的极坐标方程为,直线在第一象限的交点为,与的交点为(异于原点),求.

【答案】(1) ;(2).

【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)由极径的应用求出结果.

(1)曲线C1的参数方程为t为参数).

转换为直角坐标方程为:

转换为极坐标方程为:ρ2+8ρ2sin2θ﹣9=0.

(2)因为两点在直线上,可设.

把点的极坐标代入的方程得:,解得.

由己知点在第一象限,所以.

因为异于原点,所以把点的极坐标代入的方程得:

,解得.

所以,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为数列的前项和为满足,且.若存在使得成立则实数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,MBC的中点,D、E、F分别是边BC、CA、AB上的点,且AE=AF,AEF的外接圆交线段AD于点P.若点P满足,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面底面ABCD是等边三角形,底面ABCD为梯形,且

证明:

A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点.

(1)证明:平面

(2)若平面,求的值;

(3)在(2)的条件下,三棱锥的体积是18,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国大能手”是央视推出的一档大型职业技能挑战赛类节目,旨在通过该节目,在全社会传播和弘扬“劳动光荣、技能宝贵、创造伟大”的时代风尚.某公司准备派出选手代表公司参加“中国大能手”职业技能挑战赛.经过层层选拔,最后集中在甲、乙两位选手在一项关键技能的区分上,选手完成该项挑战的时间越少越好.已知这两位选手在15次挑战训练中,完成该项关键技能挑战所用的时间(单位:秒)及挑战失败(用“×”表示)的情况如下表1:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

×

96

93

×

92

×

90

86

×

×

83

80

78

77

75

×

95

×

93

×

92

×

88

83

×

82

80

80

74

73

据上表中的数据,应用统计软件得下表2:

均值(单位:秒)方差

方差

线性回归方程

85

50.2

84

54

(1)根据上述回归方程,预测甲、乙分别在下一次完成该项关键技能挑战所用的时间;

(2)若该公司只有一个参赛名额,根据以上信息,判断哪位选手代表公司参加职业技能挑战赛更合适?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有( )

A.在复平面内,复数对应的点位于第二象限

B.两个事件相互独立的充要条件是

C.若函数在区间上存在最小值,则实数的可能取值是

D.若随机变量服从正态分布,且,则实数的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和直线的焦点,上一点,过作抛物线的一条切线与轴交于,则外接圆面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

查看答案和解析>>

同步练习册答案