A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 由已知推导出AD⊥CD,BD⊥CD,从而CD⊥平面ABD,进而得到平面ABD⊥平面BDC,平面ABD⊥平面ADC;再由勾股定理得AB⊥AC,AB⊥AD,从而AD⊥平面ABC,进而得到平面ABD⊥平面ABC.由此能求出在四面体ABCD四个面中两两构成直二面角的个数.
解答 解:如图,∵在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,
现将△ABD沿BD折起后使AC=$\sqrt{3}$,
∴BD=$\sqrt{1+1}$=$\sqrt{2}$,CD=$\sqrt{1+1}$=$\sqrt{2}$,
∴BD2+CD2=BC2,AD2+CD2=AC2,
∴AD⊥CD,BD⊥CD,又AD∩BD=D,
∴CD⊥平面ABD,
∵CD?平面BDC,CD?平面ADC,
∴平面ABD⊥平面BDC,平面ABD⊥平面ADC,
∵AB2+AC2=BC2,∴AB⊥AC,
∵AB⊥AD,AD∩AC=A,∴AD⊥平面ABC,
∵AD?平面ABD,AD?平面ADC,
∴平面ABD⊥平面ABC,平面ADC⊥平面ABC.
∴在四面体ABCD四个面中两两构成直二面角的个数为4个.
故选:C.
点评 本题考查在四面体的四个面中两两构成直二面角的个数的求法,是中档题,解题时要认真审题,注意面面垂直的判定定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $-\sqrt{3}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com