精英家教网 > 高中数学 > 题目详情

【题目】【2017届安徽百校论坛高三文上学期联考二】已知函数.

(1)若恒成立,求实数的取值范围;

(2)是否存在整数,使得函数在区间上存在极小值,若存在,求出所有整数的值;若不存在,请说明理由.

【答案】(1);(2)存在整数,使得函数在区间上存在极小值.

【解析】

试题分析:(1)由,设,则,利用导数工具求得,原命题可转化为恒成立的取值范围为;(2)易得,利用分类讨论思想对分三种情况可得:存在整数,使得函数在区间上存在极小值.

试题解析:(1)由

,则

,则上是减函数,

恒成立,即恒成立,

,则实数的取值范围为.

(2)

时,单调递增,无极值.

时,若,或,则;若,则.

时,有极小值.

上有极小值,.存在整数.

时,若,则;若,则.

时,有极小值.

上有极小值,

,得.

①②③得,存在整数使得函数在区间上存在极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲参加ABC三个科目的学业水平考试,其考试成绩合格的概率如下表,假设三个科目的考试甲是否成绩合格相互独立.

科目A

科目B

科目C

(I)求甲至少有一个科目考试成绩合格的概率;

(Ⅱ)设甲参加考试成绩合格的科目数量为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2014课标全国,文12】已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ).

A.(2,+∞) B.(1,+∞)

C.(-∞,-2) D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017届湖北省荆、荆、襄、宜四地七校考试联盟高三2月联考数学(文)】已知函数

(Ⅰ)讨论函数的极值点的个数;

(Ⅱ)若有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求的单调区间;

(II)若对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且 .

1求函数的解析式;

2)判断并证明函数上的单调性;

3)令,若对任意的都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin ωx·cos ωx cos2ωx

(ω>0),直线xx1xx2yf(x)图象的任意两条对称轴,且|x1x2|的最小值为 .

(Ⅰ)求f(x)的表达式;

(Ⅱ)将函数f(x)的图象向右平移个单位长度后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数yg(x)的图象,求函数g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)判断函数的奇偶性,并说明理由;

2)证明:当时,函数上为减函数;

3)求函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据

x

2

4

5

6

8

y

30

40

60

50

70

1)画出散点图,并判断广告费与销售额是否具有相关关系;

2)根据表中提供的数据,用最小二乘法求出yx的回归方程

3)预测销售额为115万元时,大约需要多少万元广告费。

参考公式:回归方程为其中

查看答案和解析>>

同步练习册答案