精英家教网 > 高中数学 > 题目详情
6.在锐角△ABC中,BC=1,∠B=2∠A,AC的取值范围为(  )
A.$({1,\sqrt{2}})$B.$(0,\sqrt{2}]$C.$({\sqrt{2},\sqrt{3}})$D.$({1,\sqrt{3}})$

分析 求出A的范围,由正弦定理可得 b=2cosA,从而得到 b 的取值范围.

解答 解:在锐角△ABC中,BC=1,∠B=2∠A,
∴$\frac{π}{2}$<3 A<π,且  0<2A<$\frac{π}{2}$,
故 $\frac{π}{6}$<A<$\frac{π}{4}$,
故  $\frac{\sqrt{2}}{2}$<cosA<$\frac{\sqrt{3}}{2}$. 
由正弦定理可得 $\frac{1}{sinA}$=$\frac{b}{sin2A}$,
∴b=2cosA,
∴$\sqrt{2}$<b<$\sqrt{3}$,
故选:C

点评 本题考查锐角三角形的定义,正弦定理的应用,求得 $\frac{π}{6}$<A<$\frac{π}{4}$,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.甲、乙两人从6门课程中各选修3门,则甲、乙所选的课程中恰有1门相同的选法有180种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若b2+c2=a2-bc,则∠A=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=x 2cosx的导数为(  )
A.y′=2xcosx-x 2sinxB.y′=2xcosx+x 2sinx
C.y′=x 2cosx-2xsinxD.y′=xcosx-x 2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}为等比数列,其中a5,a9为方程x2+2016x+9=0的二根,则a7的值(  )
A.-3B.3C.±3D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b∈R,i是虚数单位,若a+i与2-bi互为共轭复数,则$\frac{b-i}{a+i}$=(  )
A.$\frac{1}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{1}{5}$iC.$\frac{1}{5}$-$\frac{3}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正四面体ABCD的外接球的表面积为16π,则该四面体的棱长为$\frac{4\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线的倾斜角是直线l:x-2y+1=0倾斜角的两倍,则双曲线的离心率为(  )
A.$\frac{5}{3}$B.$\frac{{\sqrt{7}}}{3}$C.$\frac{5}{4}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:[75,80),[80,85),[85,90),[90,95),[95,100],规定90分及以上为合格:
(1)求图中a的值;
(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.

查看答案和解析>>

同步练习册答案