精英家教网 > 高中数学 > 题目详情
15.如图1,矩形APCD中,AD=2AP,B为PC的中点,将△APB折沿AB折起,使得PD=PC,如图2.
(1)若E为PD中点,证明:CE∥平面APB;
(2)证明:平面APB⊥平面ABCD.

分析 (1)取PA中点F,连接EF,BF,由已知条件推导出EFBC为平行四边形,由此能证明CE∥平面APB.
(2)取CD中点G,AB中点H,连接PG,HG,PH,由已知条件推导出PG⊥CD,PH⊥AB,BC⊥CD,从而HG⊥CD,由线面垂直得CD⊥PH.由此能证明PH⊥平面ABCD.

解答 证明:(1)取PA中点F,连接EF,BF,
因为E为PD中点,所以EF平行且等于$\frac{1}{2}$AD,
因为BCEF平行且等于$\frac{1}{2}$AD,
所以EFEF平行且等于BC,所以EFBC为平行四边形,
所以BF∥CE,…(4分)
因为BF?平面APB,CE不包含于平面APB,
所以CE∥平面APB.…(6分)
(2)取CD中点G,AB中点H,连接PG,HG,PH,
∵PC=PD,CD中点G,∴PG⊥CD,
∵△APB是等腰三角形,H是AB中点,
∴PH⊥AB,HG∥AD.∵BC∥AD,BC⊥CD,∴HG⊥CD,…(10分)
HG∩PG=G,HG?平面PHG,PG?平面PHG,
∴CD⊥平面PHG.PH?平面PHG,∴CD⊥PH.
∵AB?平面ABCD,CD?平面ABCD,AB和CD相交,
∴PH⊥平面ABCD.
又PH?平面APB,
∴平面APB⊥平面ABCD. …(12分)

点评 本题考查直线与平面平行的证明,考查直线与平面垂直的证明,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.$\sqrt{2+2sin(2π-θ)-co{s}^{2}(π+θ)}$可化简为1-sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若全称命题p:“对?x∈(1,3),x2-2ax-1≤0”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.△ABC中,AB=$\frac{4\sqrt{6}}{3}$,cosB=$\frac{\sqrt{6}}{6}$,点D在边AC上,BD=$\sqrt{5}$,且$\overrightarrow{BD}$=λ($\frac{\overrightarrow{BA}}{|\overrightarrow{BA|}sinA}$+$\frac{\overrightarrow{BC}}{|\overrightarrow{BC|}sinC}$)(λ>0)则sinA的值为$\frac{\sqrt{70}}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若f(cosx)=-1-2cos3x,求f(sinx).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合P={a|a=$\frac{kπ}{2}$,k∈Z},则下列集合与集合P相等的是(  )
A.{a|a=kπ+$\frac{π}{2}$,k∈Z}B.{a|a=kπ,k∈Z}
C.{a|a=2kπ+$\frac{π}{2}$,k∈Z}D.{a|a=kπ或a=kπ+$\frac{π}{2}$,k∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角β的终边在图中阴影所表示的范围内(不包括边界),那么β∈(K•180°+30°,K•180°+150°),k∈Z..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-2x|x-a|(|a|≤1)
(1)当a=1时,求f(x)的单调递增区间
(2)设f(x)在x∈[-1,1]上的最大值为M(a),最小值为m(a),若M(a)-m(a)≤4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合A={lg2,lg5},B={a,b},若A=B,则$\frac{{a}^{2}+{b}^{2}-1}{{a}^{3}+{b}^{3}-1}$的值为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案