精英家教网 > 高中数学 > 题目详情

设函数f(x)=数学公式,g(x)=f(x)-ax,x∈[1,3],其中a∈(0,1),记函数g(x)的最大值与最小值的差为h(a),则h(a)的最小值是________.


分析:先求出g(x),再分类求出函数的最大值与最小值,可得分段函数,即可求得h(a)的最小值.
解答:由题意,g(x)=f(x)-ax=
∵1≤x≤2时,g(x)=1-ax,函数单调递减,∴g(x)∈[1-2a,1-a]
2<x≤3时,g(x)=(1-a)x-1,函数单调递增,∴g(x)∈(1-2a,2-3a]
若1-a<2-3a,即a<时,g(x)max=2-3a;若1-a≥2-3a,即a≥时,g(x)max=1-a;
∴函数g(x)的最大值与最小值的差为h(a)=

∴h(a)的最小值是
故答案为:
点评:本题考查函数的最值,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=alnx,g(x)=
1
2
x2

(1)记h(x)=f(x)-g(x),若a=4,求h(x)的单调递增区间;
(2)记g'(x)为g(x)的导函数,若不等式f(x)+2g'(x)≤(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围;
(3)若在[1,e]上存在一点x0,使得f(x0)-f′(x0)>g′(x0)+
1
g′(x0)
成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若x0∈D,且满足f(x0)=-x0,则称x0是函数f(x)的一个次不动点.设函数f(x)=log2x与g(x)=2x的所有次不动点之和为S,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湖州二模)设函数f(x)=
1
x
,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•杭州二模)设函数f(x)=lnx,g(x)=
1
2
x2

(Ⅰ)设函数F(x)=f(x)-
1
4
g(x)
,求F(x)的单调递增区间;
(Ⅱ)设函数G(x)=
(x-1)f(x)
g(x)
,当x∈(1,t]时,都有tG(x)-xG(t)≤G(x)-G(t)成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
13
x3,g(x)=-x2+ax-a2(a∈R)
(1)若曲线y=f(x)在x=3处的切线与曲线y=g(x)相切,求a的值;
(2)当-1<a<3时,试讨论函数h(x)=f(x)+g(x)在x∈(0,3)的零点个数.

查看答案和解析>>

同步练习册答案