精英家教网 > 高中数学 > 题目详情

【题目】对于顶点在原点的抛物线,给出下列条件:

①焦点在y轴上;

②焦点在x轴上

③抛物线上横坐标为1的点到焦点的距离等于6

④抛物线的过焦点且垂直于对称轴的弦的长为5

⑤由原点向过焦点的某条直线作垂线,垂足坐标为(21

能使抛物线方程为y210x的条件是_____

【答案】②⑤

【解析】

设抛物线方程为.根据抛物线的定义、焦半径公式、直线相互垂直与斜率之间的关系即可判断出结论.

设抛物线方程为

②③抛物线上横坐标为1的点到焦点的距离等于6,可得,解得,抛物线方程为,舍去;

②④抛物线的过焦点且垂直于对称轴的弦的长为5,可得,解得,可得抛物线方程为

②⑤由原点向过焦点的某条直线作垂线,垂足坐标为,可得:,解得,可得抛物线方程为,因此正确.

能使抛物线方程为的条件是②⑤

故答案为:②⑤

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD EPD的中点.

1)证明:直线 平面PAB

2)点M在棱PC 上,且直线BM与底面ABCD所成角为 ,求二面角M-AB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求曲线在点处的切线方程;

(Ⅱ)若函数在区间上存在极值,求实数的取值范围;

(Ⅲ)设,对任意恒有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若曲线在点处的切线经过点(0,1),求实数的值;

(Ⅱ)求证:当时,函数至多有一个极值点;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过曲线Cyx2的焦点F,并与曲线C交于Ax1y1),Bx2y2)两点.

1)求证:x1x2=﹣16

2)曲线C分别在点AB处的切线(与C只有一个公共点,且C在其一侧的直线)交于点M,求点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双一流大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:

1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数

2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:

方案一:设区间,月薪落在区间左侧的每人收取400元,月薪落在区间内的每人收取600元,月薪落在区间右侧的每人收取800元;

方案二:每人按月薪收入的样本平均数的收取;

用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图是正方体的平面展开图在这个正方体中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四个命题中正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.当点在圆上运动时,线段的中点形成轨迹

1)求轨迹的方程;

2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值

查看答案和解析>>

同步练习册答案