精英家教网 > 高中数学 > 题目详情
5.如果一条直线与一个平面平行,则这条直线与这个平面内直线的位置关系为(  )
A.平行或相交B.平行或异面C.相交或异面D.都有可能

分析 以正方体为载体,能判断出如果一条直线与一个平面平行,则这条直线与这个平面内直线的位置关系为相交或异面.

解答 解:如图,在正方体ABCD-A1B1C1D1中,直线A1B1与平面ABCD平行,
AB?面ABCD,BC?面ABCD,
A1B1与AB平行,A1B1与BC异面,
∴一条直线与一个平面平行,
则这条直线与这个平面内直线的位置关系为相交或异面.
故选:C.

点评 本题考查直线与平面内直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知$a=4,c=2\sqrt{2}$,$cosA=-\frac{{\sqrt{2}}}{4}$.
(1)求sinC和b的值;
(2)求$sin(2A-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx,g(x)=m(1+$\frac{n-1}{x+1}$)(m>0).
(1)若函数y=f(x)-g(x)在定义域内不单调,求m-n的取值范围;
(2)是否存在实数a,使得f($\frac{2a}{x}$)•f(eax)+f($\frac{x}{2a}$)≤0对任意正实数x恒成立?若存在,求出满足条件的实数a;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用[x]表示不超过x的最大整数,若函数y=kx-[x]恰好有三个零点,则实数k的取值范围是 (  )
A.($\frac{2}{3}$,2)B.($\frac{2}{3}$,$\frac{3}{4}$]∪[$\frac{3}{2}$,2)C.($\frac{2}{3}$,$\frac{4}{3}$]∪[$\frac{3}{2}$,2)D.($\frac{2}{3}$,1]∪[$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinα+cosα=$\frac{1}{3}$,其中0<α<π,求sinα-cosαθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.曲线y=cosx(0≤x≤$\frac{3π}{2}$与x轴以及直线x=$\frac{3π}{2}$所围成的面积为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.正弦定理的内容是(  )
A.$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$B.$\frac{a}{cosA}=\frac{b}{cosB}=\frac{c}{cosC}$
C.$\frac{a}{sinA}=\frac{b}{cosB}=\frac{c}{tanC}$D.以上结果都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数f(x)=$\left\{\begin{array}{l}{\frac{{x}^{2}-1}{{x}^{2}-3x+2},x≠1}\\{-2,x=1}\end{array}\right.$,在x=1处是否连续?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)的图象是由两条线段组成的折线段(如图所示),则函数f(x)的表达式为f(x)=$\left\{\begin{array}{l}{\frac{1}{2}x+1,-2≤x≤0}\\{2x+1,0≤x≤1}\end{array}\right.$.

查看答案和解析>>

同步练习册答案