【题目】如图,在四棱锥 中,底面为矩形,平面,二面角的平面角为,为中点,为中点.
(1)证明:平面;
(2)证明:平面平面;
(3)若,求实数的值,使得直线与平面所成角为.
【答案】(1)详见证明;(2)详见证明;(3).
【解析】
(1)建立空间直角坐标系, 写出坐标,证明与平面的法向量垂直即可;
(2)求出平面与平面的法向量,证明平面与平面的法向量垂直即可;
(3)根据直线与平面所成角为建立出关于的方程,从而求出的值.
解:(1)因为平面,
所以,
又因为底面为矩形,
所以,
因为,
平面,
所以平面,
所以,
因为,且二面角的平面角为,
所以,
故,设,,
因为底面为矩形,平面,
故,,
以为原点,建立如图所示的空间直角坐标系,
则,,
,,
显然平面的法向量为,
因为,
所以,
因为平面,
所以平面;
(2)由(1)得,,,,
设平面的法向量为,
故有即
令,则,
同理,可得平面的法向量为,
因为,
所以,
所以平面平面;
(3)因为,
所以,即,
故,
因为直线与平面所成角为,
所以,
即,
化简,解得
因为,
所以.
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|2x﹣1|+|x+1|,g(x)=|x﹣a|+|x+a|.
(Ⅰ)解不等式f(x)>9;
(Ⅱ)x1∈R,x2∈R,使得f(x1)=g(x2),求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+(a-2)lnx+1(a∈R).
(1)若函数在点(1,f(1))处的切线平行于直线y=4x+3,求a的值;
(2)令c(x)=f(x)+(3-a)lnx+2a,讨论c(x)的单调性;
(3)a=1时,函数y=f(x)图象上的所有点都落在区域内,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,平面平面,,,,为中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果与都是无理数,则直线不经过任何整点
③直线经过无穷多个整点,当且仅当经过两个不同的整点
④直线经过无穷多个整点的充分必要条件是:与都是有理数
⑤存在恰经过一个整点的直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:①设,则是的充要条件;②已知命题、、满足“或”真,“或”也真,则“或”假;③若,则使得恒成立的的取值范围为{或};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:的左、右焦点分别为,,下顶点为,椭圆的离心率是,的面积是.
(1)求椭圆的标准方程.
(2)直线与椭圆交于,两点(异于点),若直线与直线的斜率之和为1,证明:直线恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了进一步推动全市学习型党组织、学习型社会建设,某市组织开展“学习强国”知识测试,每人测试文化、经济两个项目,每个项目满分均为60分.从全体测试人员中随机抽取了100人,分别统计他们文化、经济两个项目的测试成绩,得到文化项目测试成绩的频数分布表和经济项目测试成绩的频率分布直方图如下:
经济项目测试成绩频率分布直方图
分数区间 | 频数 |
2 | |
3 | |
5 | |
15 | |
40 | |
35 |
文化项目测试成绩频数分布表
将测试人员的成绩划分为三个等级如下:分数在区间内为一般,分数在区间内为良好,分数在区间内为优秀.
(1)在抽取的100人中,经济项目等级为优秀的测试人员中女生有14人,经济项目等级为一般或良好的测试人员中女生有34人.填写下面列联表,并根据列联表判断是否有以上的把握认为“经济项目等级为优秀”与性别有关?
优秀 | 一般或良好 | 合计 | |
男生数 | |||
女生数 | |||
合计 |
(2)用这100人的样本估计总体.
(i)求该市文化项目测试成绩中位数的估计值.
(ii)对该市文化项目、经济项目的学习成绩进行评价.
附:
0.150 | 0.050 | 0.010 | |
2.072 | 3.841 | 6.635 |
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com