精英家教网 > 高中数学 > 题目详情
9.如图,在△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于点F,则$\frac{EF}{FC}+\frac{AF}{FD}$的值为$\frac{3}{2}$.

分析 先过E作EG∥BC,交AD于G,再作DH∥BC交CE于H,由平行线分线段成比例定理的推论,再结合已知条件,可分别求出EF:FC和AF:AD的值,相加即可.

解答 解:作EG∥BC交AD于G,则有AE:EB=1:3,即AE:AB=1:4,得EG=$\frac{1}{4}$BD=$\frac{1}{2}$CD,∴EF:FC=EG:CD=1:2,
作DH∥AB交CE于H,则DH=$\frac{1}{3}$BE=AE,∴AF:FD=AE:DH=1,
∴$\frac{EF}{FC}+\frac{AF}{FD}$=$\frac{1}{2}$+1=$\frac{3}{2}$.
故答案为$\frac{3}{2}$.

点评 本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等,解题时要注意比例式的变形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(cosα,2sinα),\overrightarrow b=(2cosβ,-sinβ)$,$α、β∈[0,\frac{π}{2}]$.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{10}{13}$,$sinβ=\frac{4}{5}$,求sin(α+2β)的值;
(2)若$\overrightarrow c=(0,1)$,求$|{\overrightarrow a-\overrightarrow c}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,三边a,b,c成等差数列,且$B=\frac{π}{6}$,则(cosA-cosC)2的值为(  )
A.$1+\sqrt{3}$B.$\sqrt{2}$C.$2+\sqrt{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x2+2ax+2,x∈[-5,5].
(1)当a=-1时,求函数f(x)的最大值和最小值;
(2)求f(x)在[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为(  )
A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.圆x2+y2+4x-1=0关于原点O对称的圆的方程为(  )
A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,则以a,b,c为三边长的三角形(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折叠,使平面ADE⊥平面ABCE.
(1)求证:BE⊥AD;
(2)若CD=2$\sqrt{3}$,求直线AC与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设实数x,y满足$\frac{{x}^{2}}{4}-{y}^{2}=1$,则3x2-2xy的最小值是(  )
A.$6-4\sqrt{2}$B.$6+4\sqrt{2}$C.$4+6\sqrt{2}$D.$4-6\sqrt{2}$

查看答案和解析>>

同步练习册答案