分析 先过E作EG∥BC,交AD于G,再作DH∥BC交CE于H,由平行线分线段成比例定理的推论,再结合已知条件,可分别求出EF:FC和AF:AD的值,相加即可.
解答 解:作EG∥BC交AD于G,则有AE:EB=1:3,即AE:AB=1:4,得EG=$\frac{1}{4}$BD=$\frac{1}{2}$CD,∴EF:FC=EG:CD=1:2,
作DH∥AB交CE于H,则DH=$\frac{1}{3}$BE=AE,∴AF:FD=AE:DH=1,
∴$\frac{EF}{FC}+\frac{AF}{FD}$=$\frac{1}{2}$+1=$\frac{3}{2}$.
故答案为$\frac{3}{2}$.
点评 本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等,解题时要注意比例式的变形.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $1+\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 2.5 | C. | 3 | D. | 3.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (x-2)2+y2=5 | B. | x2+(y-2)2=5 | C. | (x+2)2+(y+2)2=5 | D. | x2+(y+2)2=5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $6-4\sqrt{2}$ | B. | $6+4\sqrt{2}$ | C. | $4+6\sqrt{2}$ | D. | $4-6\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com