精英家教网 > 高中数学 > 题目详情

由恒等式:.可得 ;进而还可以算出的值,并

可归纳猜想得到 .

 

【答案】

.

【解析】

试题分析:等式两边平方得

,解得,在上述等式两边平方得

,所以,同理可得

,于是归纳猜想得到

.

考点:归纳推理

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
C
n
2n
,而右边(1+x)n(1+x)n=(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)(
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn)
,xn的系数为
C
0
n
C
n
n
+
C
1
n
C
n-1
n
+
C
2
n
C
n-2
n
+…+
C
n
n
C
0
n
=(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C
0
n
)2+(
C
1
n
)2+(
C
2
n
)2+…+(
C
n
n
)2=
C
n
2n

利用上述方法,化简(
C
0
2n
)2-(
C
1
2n
)2+(
C
2
2n
)2-(
C
3
2n
)2+…+(
C
2n
2n
)2
=
(-1)n
C
n
2n
(-1)n
C
n
2n

查看答案和解析>>

科目:高中数学 来源:2014届江苏省高二下学期期中考试理科数学试卷(解析版) 题型:填空题

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式可得,左边的系数为

而右边的系数为

恒成立,可得

利用上述方法,化简      

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们常用构造等式对同一个量算两次的方法来证明组合恒等式,如由等式(1+x)2n=(1+x)n(1+x)n可得,左边xn的系数为
Cn2n
,而右边(1+x)n(1+x)n=(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)(
C0n
+
C1n
x+
C2n
x2+…+
Cnn
xn)
,xn的系数为
C0n
Cnn
+
C1n
Cn-1n
+
C2n
Cn-2n
+…+
Cnn
C0n
=(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2
,由(1+x)2n=(1+x)n(1+x)n恒成立,可得(
C0n
)2+(
C1n
)2+(
C2n
)2+…+(
Cnn
)2=
Cn2n

利用上述方法,化简(
C02n
)2-(
C12n
)2+(
C22n
)2-(
C32n
)2+…+(
C2n2n
)2
=______.

查看答案和解析>>

同步练习册答案