精英家教网 > 高中数学 > 题目详情
20.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命题p:“m∈A”;命题q:“m∈B”.
(1)若命题p为真命题,求实数m的取值范围;
(2)若命题“p∨q”和“p∧q”中均为真命题,求实数m的取值范围.

分析 (1)由命题p为真命题得x2-2x-15>0,解不等式即可;
(2)命题“p∨q”和“p∧q”均为真命题知命题p,q均为真命题m∈A∩B.

解答 解:(1)由x2-2x-15>0⇒x<-3或x>5…(2分)
由命题m∈A为真命题,得m<-3或m>5.
故实数m的取值范围是(-∞,-3)∪(5,+∞).             …(5分)
(2)由A=(-∞,-3)∪(5,+∞),B=(-∞,6),
则A∩B=(-∞,-3)∪(5,6).
由命题“p∨q”和“p∧q”均为真命题知命题p,q均为真命题m∈A∩B.
即m的取值范围是(-∞,-3)∪(5,6).             …(10分)

点评 本题考查命题的真假判断与应用,解题的关键是对两个命题时行化简,以及正确理解“p或q”为真,p且q”为真的意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列函数在(0,+∞)上是增函数的是(  )
A.y=3-xB.y=-2xC.y=log0.1xD.y=x${\;}^{\frac{1}{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[-2,0],则a+b=$\frac{\sqrt{3}}{3}-3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.关于x的函数f(x)=$\frac{{x}^{3}+t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+2t}{{x}^{2}+2+cosx}$(t≠0)的最大值为m,最小值为n,且m+n=2017,则实数t的值为$\frac{2017}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=3${\;}^{\sqrt{x-2}}}$的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;     
(Ⅱ)求数列{2${\;}^{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)某简单几何体的三视图中,正视图、侧视图、俯视图都是如图所示的直角边长为1的等腰直角三角形,求该几何体的表面积和体积;
(2)三棱锥O-ABC中,OB=AC=5,OA=BC=$\sqrt{41}$,AB=OC=$\sqrt{34}$,求该三棱锥的外接球体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}的前3项和为4,后3项和为7,所有项和为22,则项数n为(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若非零函数f(x)对于任意的实数a,b均有f(a+b)=f(a)?f(b),且当x<0时,f(x)>1.
(1)求f(0)的值;
(2)求证:$f(-x)=\frac{1}{f(x)}$;
(3)求证:f(x)>0;
(4)求证:f(x)为减函数;
(5)当$f(4)=\frac{1}{16}$时,解不等式f(x2+x-3)?f(5-x2)≤$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案