精英家教网 > 高中数学 > 题目详情

【题目】在标有的袋中有个红球和个白球,这些球除颜色外完全相同.

Ⅰ)若从袋中依次取出个球,求在第一次取到红球的条件下,后两次均取到白球的概率;

Ⅱ)现从甲袋中取出个红球, 个白球,装入标有的空袋.若从甲袋中任取球,乙袋中任取球,记取出的红球的个数为,求的分布列和数学期望

【答案】(Ⅰ) ;(Ⅱ)答案见解析.

【解析】试题分析:(Ⅰ)利用条件概率公式计算所求的概率值;(Ⅱ)由题意知的所有可能取值,计算对应的概率值,写出随机变量的分布列,计算数学期望值.

试题解析:Ⅰ)记第一次取到红球为事件后两次均取到白球为事件 所以,第一次取到红球的条件下,后两次均取到白球的概率

的所有可能取值为

的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥(如图1)的平面展开图(如图2)中,四边形为边长为的正方形,△ABE和△BCF均为正三角形,在三棱锥中:

(I)证明:平面 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)若点在棱上,满足 ,点在棱上,且的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln x+ax2-2x,aR,a≠0

(1)若函数f(x)的图象在x=1处的切线与x轴平行,f(x)的单调区间;

(2)f(x)≤axx[,+∞)上恒成立,a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A.互相垂直的两条直线的直观图仍然是互相垂直的两条直线

B.梯形的直观图可能是平行四边形

C.矩形的直观图可能是梯形

D.正方形的直观图可能是平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P—ABCD的底面是边长为a的棱形,PD⊥底面ABCD.

1)证明:AC⊥平面PBD

2)若PD=AD,直线PB与平面ABCD所成的角为45°,四棱锥PABCD的体积为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)某研究小组在电脑上进行人工降雨模拟实验,准备用ABC三种人工降雨方式分别对甲、乙、丙三地实施人工降雨,其实验数据统计如下:

方式

实施地点

大雨

中雨

小雨

模拟实验总次数

A

4

6

2

12

B

3

6

3

12

C

2

2

8

12

假定对甲、乙、丙三地实施的人工降雨彼此互不影响,请你根据人工降雨模拟实验的统计数据:

(1)求甲、乙、丙三地都恰为中雨的概率;

(2)考虑到旱情和水土流失,如果甲地恰需中雨即达到理想状态,乙地必须是大雨才达到理想状态,丙地只要是小雨或中雨即达到理想状态,记甲、乙、丙三地中达到理想状态的个数为随机变量ξ,求随机变量ξ的分布列和均值E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD中,∠ABC=60°,ACBD相交于点OAE⊥平面ABCDCFAEABAE=2.

(1)求证:BD⊥平面ACFE

(2)当直线FO与平面BED所成的角为45°时,求异面直线OFBE所成的角的余弦值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xiyi)(i=12n),用最小二乘法建立的回归方程为,则下列结论中不正确的是(  )

A. 若该大学某女生身高为170cm,则可断定其体重必为

B. 回归直线过样本点的中心

C. 若该大学某女生身高增加1cm,则其体重约增加

D. yx具有正的线性相关关系

查看答案和解析>>

同步练习册答案