精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2的图象在点(-1,2)处的切线恰好与x-3y=0垂直,又f(x)在区间[m,m+1]上单调递增,则实数m的取值范围是(  )
A、m≤-3B、m≥0C、m<-3或m>0D、m≤-3或m≥0
分析:求出f′(x),根据切线与x-3y=0垂直得到切线的斜率为-3,得到f′(-1)=-3,把切点代入f(x)中得到f(-1)=2,两者联立求出a和b的值,确定出f(x)的解析式,然后求出f′(x)大于等于0时x的范围为(-∞,-2]或[0,+∞)即为f(x)的增区间根据f(x)在区间[m,m+1]上单调递增,得到关于m的不等式,即可求出m的取值范围.
解答:解:f′(x)=3ax2+2bx,因为函数过(-1,2),且切线与x-3y=0垂直得到切线的斜率为-3,
得到:
f(-1)=2
f′(-1)=-3
-a+b=2
3a-2b=-3
解得:
a=1
b=3
,则f(x)=x3+3x2
f′(x)=3x2+6x=3x(x+2)≥0解得:x≥0或x≤-2,即x≥0或x≤-2时,f(x)为增函数;
所以[m,m+1]?(-∞,-2]或[m,m+1]?[0,+∞)即m+1≤-2或m≥0,
解得m≤-3或m≥0
故选D
点评:考查学生掌握两条直线垂直时斜率的关系,会利用导数研究曲线上某点的切线方程,会利用导数研究函数的单调性.本题的突破点是确定函数的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案