精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,点F(﹣1,0),过直线l:x=﹣2右侧的动点P作PA⊥l于点A,∠APF的平分线交x轴于点B,|PA|= |BF|.

(1)求动点P的轨迹C的方程;
(2)过点F的直线q交曲线C于M,N,试问:x轴正半轴上是否存在点E,直线EM,EN分别交直线l于R,S两点,使∠RFS为直角?若存在,求出点E的坐标,若不存在,请说明理由.

【答案】
(1)解:设P(x,y),由平面几何知识得:

= ,即 =

化简,得:x2+2y2=2,

∴动点P的轨迹C的方程为x2+2y2=2(x ).


(2)解:假设满足条件的点E(n,0)(n>0)存在,

设直线q的方程为x=my﹣1,

M(x1,y1),N(x2,y2),R(﹣2,y3),S(﹣2,y4),

联立 ,得:(m2+2)y2﹣2my﹣1=0,

y1+y2= ,y1y2=﹣

=﹣ +1=

=﹣

由条件知 = ,y3=﹣

同理

=﹣y3,kSF=﹣y4

由于∠RFS为直角,∴y3y4=﹣1,即(2+n2)y1y2=﹣[x1x2+n(x1+x2)+n2],

(2+n)2 = + +n2

∴(n2﹣2)(m2+1)=0,解得n=

∴满足条件的点E存在,其坐标为( ,0).


【解析】(1)设P(x,y),由平面几何知识得 = ,由此能求出动点P的轨迹C的方程.(2)假设满足条件的点E(n,0)(n>0)存在,设直线q的方程为x=my﹣1,联立 ,得:(m2+2)y2﹣2my﹣1=0,由此利用韦达定理、直线方程、椭圆性质,结合已知条件能求出满足条件的点E存在,其坐标为( ,0).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列几个命题:

①函数是偶函数,但不是奇函数;

②方程的有一个正实根,一个负实根,

是定义在上的奇函数,当时,,则 时,

④函数的值域是

其中正确命题的序号是_____(把所有正确命题的序号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2 . (Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

井号I

1

2

3

4

5

6

坐标(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

钻探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205


(1)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为y=6.5x+a,求a,并估计y的预报值;
(2)现准备勘探新井7(1,25),若通过1、3、5、7号井计算出的 的值( 精确到0.01)相比于(1)中b,a的值之差不超过10%,则使用位置最接近的已有旧井6(1,y),否则在新位置打开,请判断可否使用旧井? (参考公式和计算结果:
(3)设出油量与勘探深度的比值k不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代的天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气晷(guǐ)长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长的变化量相同,周而复始.若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(一丈等于十尺,一尺等于十寸),则夏至之后的那个节气(小暑)晷长是(
A.五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为(
A.±1
B.±2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4.
(1)求抛物线E的方程;
(2)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车的使用年数x与所支出的维修费用y的统计数据如表:

使用年数x(单位:年)

1

2

3

4

5

维修总费用y(单位:万元)

0.5

1.2

2.2

3.3

4.5

根据上表可得y关于x的线性回归方程 = x﹣0.69,若该汽车维修总费用超过10万元就不再维修,直接报废,据此模型预测该汽车最多可使用( )
A.8年
B.9年
C.10年
D.11年

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(x+1)﹣x2在区间(0,1)内任取两个实数p,q,且p≠q,不等式 >1恒成立,则实数a的取值范围为(
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]

查看答案和解析>>

同步练习册答案