精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点P(4,0)且不垂直于x轴直线与椭圆C相交于A、B两点.

(1)求椭圆C的方程;

(2)求的取值范围;

(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.

 

【答案】

(1);(2);(3)证明过程详见解析.

【解析】

试题分析:本题考查椭圆的标准方程和几何性质、直线方程等基础知识,考查用代数方法研究圆锥曲线的性质以及数形结合的数学思想方法,考查运算求解能力、综合分析和解决问题的能力.第一问,利用离心率及解出得到椭圆的标准方程;第二问,先设出直线的方程,因为直线与椭圆相交,消参得关于的方程,因为相交于2个交点,所以得到的取值范围,设出点坐标,则求出两根之和、两根之积及,所以,将上述的条件代入,得到的表达式,求最值;第三问,先通过对称,得到点的坐标,列出直线的方程,令,得的值正好得1,所以得证.

试题解析:(1)解:由题意知,∴,即

,∴

故椭圆的方程为 .    2分

(2)解:由题意知直线的斜率存在,设直线的方程为

得:   ,      4分

得:

设A(x1,y1),B (x2,y2),则  ①

,∴,∴

的取值范围是.

(3)∵两点关于轴对称,∴

直线的方程为,令得:

,∴

由将①代入得:,∴直线轴交于定点.

考点:1.椭圆的标准方程;2.椭圆的离心率;3.直线与椭圆的位置关系;4.两根之和、两根之积.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的离心率为
1
2
,焦点是(-3,0),(3,0),则椭圆方程为(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

同步练习册答案