如图,在直三棱柱中,,,且是中点.
(I)求证:平面;
(Ⅱ)求证:平面.
(Ⅰ)见解析;(Ⅱ)见解析.
【解析】
试题分析:(Ⅰ)连接交于点,连接,则可证为的中位线,则有,根据直线与平面平行的判定定理即知,;(Ⅱ)先由和,根据直线与平面垂直的判定定理可知,,由直线与平面垂直的性质定理可知;由角的与余切值相等得到,根据等量代换则有,即,结合直线与平面垂直的判定定理可知,.
试题解析:(Ⅰ)连接交于点,连接,如图:
∵为正方形,∴为中点,
又为中点,∴为的中位线,
∴,
又,,
∴. 4分
(Ⅱ)∵,又为中点,∴,
又∵在直棱柱中,,
又,∴,
又∵,∴,
又,所以. 8分
在矩形中,,
∴,
∴,
即,
又,
∴. 12分
考点:1.直线与平面平行的判定定理;2.直线与平面垂直的判定定理;3.直线与平面垂直的性质定理
科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题
如图,在直三棱柱中, AB=1,,
∠ABC=60.
(1)证明:;
(2)求二面角A——B的正切值。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年天津市高三第二次月考文科数学 题型:解答题
(本小题满分13分)如图,在直三棱柱中,,分别为的中点,四边形是边长为的正方形.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省高三2月月考理科数学 题型:解答题
如图,在直三棱柱中,,,是的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)试问线段上是否存在点,使与成 角?若存在,确定点位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com