精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱中,,且中点.

(I)求证:平面

(Ⅱ)求证:平面.

 

【答案】

(Ⅰ)见解析;(Ⅱ)见解析.

【解析】

试题分析:(Ⅰ)连接于点,连接,则可证的中位线,则有,根据直线与平面平行的判定定理即知,;(Ⅱ)先由,根据直线与平面垂直的判定定理可知,,由直线与平面垂直的性质定理可知;由角的与余切值相等得到,根据等量代换则有,即,结合直线与平面垂直的判定定理可知,.

试题解析:(Ⅰ)连接于点,连接,如图:

为正方形,∴中点,

中点,∴的中位线,

,

.                   4分

(Ⅱ)∵,又中点,∴

又∵在直棱柱中,

,∴

又∵,∴

,所以.         8分

在矩形中,

.            12分

考点:1.直线与平面平行的判定定理;2.直线与平面垂直的判定定理;3.直线与平面垂直的性质定理

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=
2
,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为
 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二下期中理科数学试卷(解析版) 题型:解答题

如图,在直三棱柱中, AB=1,

∠ABC=60.

(1)证明:

(2)求二面角A——B的正切值。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年天津市高三第二次月考文科数学 题型:解答题

(本小题满分13分)如图,在直三棱柱中,分别为的中点,四边形是边长为的正方形.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的余弦值.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省高三2月月考理科数学 题型:解答题

如图,在直三棱柱中,的中点.

(Ⅰ)求证:∥平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)试问线段上是否存在点,使 角?若存在,确定点位置,若不存在,说明理由.

 

 

 

查看答案和解析>>

科目:高中数学 来源:2013届云南省高二9月月考数学试卷 题型:解答题

如图,在直三棱柱中,,点的中点.

求证:(1);(2)平面.

 

 

 

查看答案和解析>>

同步练习册答案