精英家教网 > 高中数学 > 题目详情

(本小题满分分)已知函数是不同时为零的常数).
(1)当时,若不等式对任意恒成立,求实数的取值范围;
(2)求证:函数内至少存在一个零点.

(1)(2)时易证结论;时,利用函数的零点存在定理可以证明结论成立.

解析试题分析:(1)当时,
由不等式对任意恒成立,
,解得.                                     ……5分
(2)证明:当时,因为不同时为零,所以
所以的零点为,                               ……6分
时,二次函数的对称轴方程为,    ……7分
①若时,

∴函数内至少存在一个零点.                            ……10分
②若时,

∴函数内至少存在一个零点.                       ……13分
综上得:函数内至少存在一个零点.                    ……14分
考点:本小题主要考查二次函数恒成立问题和函数零点存在定理的应用,考查学生的转化能力和运算求解能力以及分类讨论思想的应用.
点评:恒成立问题,一般转化为最值问题解决,而函数的零点存在定理能确定一定存在零点,但是确定不了存在几个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)="2" sin(0≤x≤5),点A、B分别是函数y=f(x)图像上的最高点和最低点.
(1)求点A、B的坐标以及·的值;
(2)没点A、B分别在角的终边上,求tan()的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算
(1)
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)不等式,当时恒成立.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数),
(Ⅰ)求函数的最小值;
(Ⅱ)已知:关于的不等式对任意恒成立;
:函数是增函数.若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题方程有两个不等的正实数根,命题方程无实数根。若“”为真命题,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数为偶函数.
⑴求的值;
⑵若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)水库的蓄水量随时间而变化,现用t表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为
V(t)=
(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),问一年内哪几个月份是枯水期?
(Ⅱ)求一年内该水库的最大蓄水量(取e=2.7计算).

查看答案和解析>>

同步练习册答案