精英家教网 > 高中数学 > 题目详情
已知一个几何体的正(主)视图与侧(左)视图均为长等于2的正三角形,俯视图如图所示,在俯视图中,半圆的直径与等腰直角三角形的斜边长均为2,则该几何体的体积为(  )
A、
3
π
6
B、
3
(π+2)
6
C、
3
(π+2)
3
D、
3
(π+2)
9
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由三视图可知:该几何体为一个组合体,后面是一个圆锥的一半,前面是一个三棱锥(底面是等腰直角三角形,和圆锥粘贴的部分是垂直于底面的等边三角形,边长为2),即可得出.
解答: 解:由三视图可知:该几何体为一个组合体,后面是一个圆锥的一半,前面是一个三棱锥(底面是等腰直角三角形,和圆锥粘贴的部分是垂直于底面的等边三角形,边长为2),
∴该几何体的体积V=
1
2
×
1
3
π×12×
3
+
1
3
×
1
2
×(
2
)2×
3
=
3
(π+2)
6

故选:B.
点评:本题考查了组合体的三视图、三棱锥与圆锥的体积计算公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2-kx-3,x∈(-1,5].
(Ⅰ)当k=2时,求函数f(x)的值域;
(Ⅱ)若函数f(x)在区间(-1,5]上是单调函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图建立空间直角坐标系,已知正方体的棱长为2,
(1)求正方体各顶点的坐标;
(2)求A1C的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
4
+
y2
b2
=1(b>0)的焦点在x轴上,其右顶点(a,0)关于直线x-y+4=0的对称点在直线x=-
a2
c
上(c为半焦距长).
(I)求椭圆的方程;
(Ⅱ)过椭圆左焦点F的直线l交椭圆于A、B两点,交直线x=-
a2
c
于点C.设O为坐标原点,且
OA
+
OC
=2
OB
,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

两个正数a,b的等差中项是
5
2
,一个等比中项是
6
,且a>b,则椭圆
x2
a2
+
y2
b2
=1的离心率e等于(  )
A、
13
3
B、
13
C、
5
3
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

今年10月在济南举办第十届中国艺术节,届时有很多国际友人参加活动.现有8名“十艺节”志愿者,其中志愿者A1,A2,A3通晓英语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓英语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2﹢y2+2x-3=0,直线l:x+y+t=0,若直线l与圆C相交于M,N两点,且|MN|=
14

(1)求直线l在x轴上的截距;
(2)已知点A(2,1),若直线l与圆C相交于M,N两点,设直线MA的斜率为kMA,直线MB的斜率为kMB.问是否存在使kMA•kMB=2?若存在,求出实数t的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
-x+3-3a,(x<0)
ax,(x≥0)(a>0且a≠1)
是x∈(-∞,+∞)上的减函数,则a的取值范围是(  )
A、(0,
2
3
]
B、(
1
3
,1)
C、(2,3)
D、(
1
2
2
3
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的一元二次方程x2+(m-3)x+1=0的两根x1和x2满足x1<x2<1.求实数m的取值范围.

查看答案和解析>>

同步练习册答案