精英家教网 > 高中数学 > 题目详情
函数y=
cos2x
1-sinx
-cos2x的值域是(  )
A、[1,3)
B、[-
1
8
,3)
C、[-
1
8
,1]
D、[-
1
8
,+∞)
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:求出函数成立的条件,利用余弦函数的倍角公式进行化简,结合一元二次函数的性质即可求出函数的值域.
解答: 解:由1-sinx≠0得sinx≠1,
y=
cos2x
1-sinx
-cos2x=
1-sin2x
1-sinx
-cos2x=1+sinx-cos2x=2sin2x+sinx=2(sinx+
1
4
2-
1
8

∵-1≤sinx<1,
∴当sinx=-
1
4
时,函数取得最小值-
1
8

但sinx=1时,y=3,
即-
1
8
≤y<3,
故函数的值域为[-
1
8
,3),
故选:B.
点评:本题主要考查函数值域的求解,利用余弦函数的倍角公式将函数进行化简,结合一元二次函数的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x∈R,x2-ax+a>0”是真命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙0是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E.求证:BE平分∠ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+xlnx.
(1)求函数f(x)的图象在点P(1,1)处的切线方程;
(2)求函数f(x)的单调递增区间;
(3)若不等式f(x)≥-x2+(a+1)x-6在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个向量
a
b
c
两两所夹的角都为120°,且|
a
|=1,|
b
|=2,|
c
|=3,则向量
a
+
b
与向量
c
的夹角θ的值为(  )
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cosxsin(x+
π
3
)的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

现有A、B两种型号的汽车模型,其中A种型号的汽车模型有3个,标号为1,2,3;B种型号的汽车模型有2个,标号为1,2.
(1)从以上五个汽车模型中任取两个参与展览,求这两个汽车模型型号不同且标号之和小于4的概率;
(2)现又有一个标号为0的C种汽车模型,从这六个汽车模型中任取两个,求这两个汽车模型型号不同且标号之和小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份20042006200820102012
粮食需求量y/万吨236246257276286
(1)作出散点图,你能从散点图中发现年份与粮食年需求量的一般规律吗?
(2)利用所给数据求年需求量与年份之间的回归直线方
y
=bx+a;
(3)利用(2)中所求的直线方程预测该地2014年的粮食需求量.参考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

方程log2x+x=0的解所在的区间为(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、[1,2]

查看答案和解析>>

同步练习册答案