精英家教网 > 高中数学 > 题目详情

【题目】如图,棱柱ABCD﹣A1B1C1D1中,底面ABCD是平行四边形,侧棱AA1⊥底面ABCD,AB=1,AC= ,BC=BB1=2.
(Ⅰ)求证:AC⊥平面ABB1A1
(Ⅱ)求二面角A﹣C1D﹣C的平面角的余弦值.

【答案】证明:(Ⅰ)∵在底面ABCD中,AB=1,AC= ,BC=2, ∴AB2+AC2=BC2 , ∴AB⊥AC,
∵侧棱AA1⊥底面ABCD,∴AA1⊥AC,
又∵AA1∩AB=A,AA1 , AB平面ABB1A1
∴AC⊥平面ABB1A1
(Ⅱ)解:过点C作CP⊥C1D于P,连接AP,
由(Ⅰ)可知,AC⊥平面DCC1D1
∠CPA是二面角A﹣C1D﹣C的平面角,
∵CC1=BB1=2,CD=AB=1,∴CP= = =
∴tan = ,∴cos
∴二面角A﹣C1D﹣C的平面角的余弦值为

【解析】(Ⅰ)推导出AB⊥AC,AA1⊥AC,由此能证明AC⊥平面ABB1A1 . (Ⅱ)过点C作CP⊥C1D于P,连接AP,则AC⊥平面DCC1D1 , 从而∠CPA是二面角A﹣C1D﹣C的平面角,由此能求出二面角A﹣C1D﹣C的平面角的余弦值.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知AD为圆O的直径,直线BA与圆O相切于点A,直线OB与弦AC垂直并相交于点G,与弧AC相交于M,连接DC,AB=10,AC=12.
(1)求证:BADC=GCAD;
(2)求BM.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,曲线C的参数方程为 为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ+ )=2
(1)求曲线C在极坐标系中的方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过其右焦点F且与x轴垂直的直线交椭圆C于P,Q两点,椭圆C的右顶点为R,且满足.

(1)求椭圆C的方程;

(2)若斜率为k(其中)的直线l过点F,且与椭圆交于点A,B,弦AB的中点为M,直线OM与椭圆交于点C,D,求四边形ACBD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抛物线的焦点,过点的直线交于两点,的准线与轴的交点为,动点满足

(1)求点的轨迹方程;

(2)当四边形的面积最小时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先把函数y=sin(x+φ)的图象上个点的横坐标缩短为原来的 (纵坐标不变),再向右平移 个单位,所得函数关于y轴对称,则φ的值可以是(
A.
B.
C.-
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+2= ,且a1=1,a2=2.
(1)求a3﹣a6+a9﹣a12+a15的值;
(2)设数列{an}的前n项和为Sn , 当Sn>2017时,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,角所对的边分别为,已知

1)求的值;

2)求的值.

查看答案和解析>>

同步练习册答案