精英家教网 > 高中数学 > 题目详情
13.已知直线(6m2+3m-3)x+(m2+m)y-4m+1=0与直线x-2y+6=0的夹角为arctan3,求实数m的值.

分析 求出直线的斜率,利用夹角公式,可得结论.

解答 解:∵直线(6m2+3m-3)x+(m2+m)y-4m+1=0的斜率为-$\frac{6{m}^{2}+3m-3}{{m}^{2}+m}$,直线x-2y+6=0的斜率为$\frac{1}{2}$
∴直线(6m2+3m-3)x+(m2+m)y-4m+1=0与直线x-2y+6=0的夹角是|$\frac{\frac{1}{2}+\frac{6{m}^{2}+3m-3}{{m}^{2}+m}}{1-\frac{1}{2}•\frac{6{m}^{2}+3m-3}{{m}^{2}+m}}$|=3
解得m=-1,-3或$\frac{3}{5}$,
m=-1时,直线斜率不存在,舍去,
∴m=-3或$\frac{3}{5}$.

点评 本题考查直线的夹角公式,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若全集U={1,2,3,4,5},A={2,4,5},B={1,2,5},则(∁UA)∩B=(  )
A.{2,5}B.{1,3,4}C.{1,2,4,5}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)的定义域为R,对于任意的x∈R,有f(3+x)=-f(1-x),那么函数f(x)的图象关于点(2,0)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,平面ABC⊥平面AA1B1B,四边形AA1B1B是矩形,且AB=1,AC=2,BC=$\sqrt{5}$.
(1)求证:AA1⊥平面ABC;
(2)若直线BC1与平面ABC所成角的正弦值为$\frac{2}{3}$,求二面角A1-BC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+2x,x∈[-2,1]时的值域为[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b,c分别为锐角△ABC的三个内角A,B,C的对边,且acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A的大小;
(2)若a=$\sqrt{3}$,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求平行于直线x-y-2=0,且与它的距离为2$\sqrt{2}$的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|x-2|+|x+2|,则下列坐标表示的点一定在函数f(x)图象上的是(  )
A.(a,-f(a))B.(a,-f(-a))C.(-a,-f(a))D.(-a,f(a))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x),当0≤x≤$\frac{π}{2}$时,f(x)=x3sinx,设a=f(sin$\frac{π}{3}$),b=f(sin2),c=f(sin3),则a,b,c的大小关系为(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步练习册答案