精英家教网 > 高中数学 > 题目详情

【题目】点外卖现已成为上班族解决午餐问题的一种流行趋势.某配餐店为扩大品牌影响力,决定对新顾客实行让利促销,规定:凡点餐的新顾客均可获赠10元或者16元代金券一张,中奖率分别为,每人限点一餐,且100%中奖.现有A公司甲、乙、丙、丁四位员工决定点餐试吃.

(Ⅰ) 求这四人中至多一人抽到16元代金券的概率;

(Ⅱ) 这四人中抽到10元、16元代金券的人数分别用表示,记,求随机变量的分布列和数学期望.

【答案】(Ⅰ);(Ⅱ)答案见解析.

【解析】

(1)4人中恰有i人抽到16元代金券为事件.由题意求解四人中至多一人抽到16元代金券的概率即可;

(2)4人中恰有i人抽到500元代金券为事件.由题意可知可取0,3,4.求得相应的概率值,列出分布列,最后求解数学期望即可.

(1)4人中恰有i人抽到16元代金券为事件.

易知四人中至多一人抽到16元代金券的概率:

.

(2)4人中恰有i人抽到500元代金券为事件.

由题意可知可取0,3,4.

.

的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点的距离和它到直线的距离的比是常数

求点M的轨迹C的方程;

N是圆E上位于第四象限的一点,过N作圆E的切线,与曲线C交于AB两点求证:的周长为10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需要两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获得利润分别为3万元、4万元,则该企业每天可获得最大利润为(  )

原料限额

(吨)

3

2

10

(吨)

1

2

6

A. 10万元B. 12万元C. 13万元D. 14万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱 中,,且

(Ⅰ)求证:平面

(Ⅱ) 求证:

(Ⅲ) ,判断直线 与平面 是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间中不同直线mn和不同平面αβ,下面四个结论:

①若mn互为异面直线,mαnαmβnβ,则αβ

②若mnmαnβ,则αβ

③若nαmα,则nm

④若αβmαnm,则nβ

其中正确的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.”这个论断被各种媒体反复引用,出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天40名读书者进行调查,将他们的年龄分成6段: 后得到如图所示的频率分布直方图.

问:

(1)估计在40名读书者中年龄分布在的人数;

(2)求40名读书者年龄的平均数和中位数;

(3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}n项和为Sn,满足Sn+14an+2nN+),且a11

1)若cn,求证:数列{cn}是等差数列.

2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向左平移个单位,然后纵坐标不变,横坐标变为原来的倍,得到的图象,下面四个结论正确的是( )

A. 函数在区间上为增函数

B. 将函数的图象向右平移个单位后得到的图象关于原点对称

C. 是函数图象的一个对称中心

D. 函数上的最大值为

查看答案和解析>>

同步练习册答案