精英家教网 > 高中数学 > 题目详情
3.已知函数(1)f(x)=3lnx;(2)f(x)=3x2+1;(3)f(x)=3ex;(4)$f(x)=\frac{3}{x}$.其中满足对于任意x1∈D(其中D为函数的定义域),相应地存在唯一的x2∈D,使$\sqrt{f({x_1})f({x_2})}=3$的函数的序号为(3)、(4).

分析 先分析题目中对于任意的x1∈D,存在唯一的x2∈D,使$\sqrt{f({x_1})f({x_2})}=3$成立,
再对题目中的函数进行分析、判断,得出符合条件的函数即可.

解答 解:根据题意可知:
对于(1),函数f(x)=3lnx,x=1时,lnx没有倒数,不成立;
对于(2),函数f(x)=3x2+1,当x1=0时,存在x2=±$\frac{2}{3}$$\sqrt{6}$使得使$\sqrt{f({x_1})f({x_2})}=3$,故不符合题意;
对于(3),函数f(x)=3ex,对任意一个自变量x,函数f(x)都有倒数,且使$\sqrt{f({x_1})f({x_2})}=3$成立;
对于(4),函数f(x)=$\frac{1}{x}$,对定义域内的任意一个自变量x,函数f(x)都有倒数,且使$\sqrt{f({x_1})f({x_2})}=3$成立;
所以成立的函数序号为(3)、(4).
故答案为:(3)、(4).

点评 本题主要应用新定义的方式考查均值不等式在函数中的应用问题,对于新定义的问题,需要认真分析定义内容,是易错题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,已知四边形ABCD为矩形,PA⊥平面ABCD,下列结论中不一定正确的是(  )
A.PD⊥CDB.BD⊥平面PAOC.PB⊥CBD.BC∥平面PAD

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a2-x-8(实数a>0,a≠1).
(1)判断函数f(x)的奇偶性并证明;
(2)若x∈[1,+∞),求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
每件产品A每件产品B
研制成本、搭载
费用之和(万元)
2030计划最大资金额
300万元
产品重量(千克)105最大搭载重量110千克
预计收益(万元)8060
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如果存在非零常数C,对于函数y=f(x)定义域上的任意x,都有f(x+C)>f(x)成立,那么称函数为“Z函数”.
(Ⅰ)若g(x)=2x,h(x)=x2,试判断函数g(x)和h(x)是否是“Z函数”?若是,请证明:若不是,主说明理由:
(Ⅱ)求证:若y=f(x)(x∈R)是单调函数,则它是“Z函数”;
(Ⅲ)若函数f(x)=ax3+2x2+3是“Z函数”,求实数a满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于原命题:“已知a,b,c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为(  )
A.0个B.1个C.2个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2-x+x,则g(2)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设α:x≤-5,β:2m-3≤x≤2m+1,若α是β的必要条件,则实数m的取值范围是(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>0,函数f(x)=$\frac{1}{3}{a^2}{x^3}-a{x^2}+\frac{2}{3}$,g(x)=-ax+1,若在区间$(0,\frac{1}{2}]$上至少存在一个实数x0,使f(x0)>g(x0)成立,则a的取值范围是(  )
A.$(-3+\sqrt{17},+∞)$B.$(3+\sqrt{17},+∞)$C.$(-3+\sqrt{17},3+\sqrt{17})$D.$(0,-3+\sqrt{17})$

查看答案和解析>>

同步练习册答案