精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线

1)求直线和曲线的直角坐标方程;

2)直线轴交于点,与曲线相交于两点,求的值.

【答案】1;(2

【解析】

1)直接利用转化公式求解即可;

2)利用一元二次方程根和系数关系式的应用求出结果.

解:(1)已知曲线的参数方程为为参数),

转换为直角坐标方程为①,

曲线的极坐标方程为,整理得

根据转换为直角坐标方程为②,

∴①②两个方程相减得公共弦所在直线的方程为

曲线的极坐标方程为

根据转换为直角坐标方程为

2)直线轴交于

∴直线的参数方程为为参数),

代入到,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线lxy0将圆O分成的两部分的面积之比为( )

A.(4π):(8π)B.(4π3):(8π+3)

C.(2π2):(10π+2)D.(2π3):(10π+3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】依法纳税是公民应尽的义务,随着经济的发展,个人收入的提高,自2018101日起,个人所得税起征点和税率进行了调整,调整前后的计算方法如下表,20181222日国务院又印发了《个人所得税专项附加扣除暂行办法》(以下简称《办法》),自201911日起施行,该《办法》指出,个人所得税专项附加扣除,是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等6项专项附加扣除.简单来说,2018101日之前,应纳税所得额税前收入险金基本减除费用(统一为3500)”依法扣除的其他扣除费用”;201911日起,应纳税所得额税前收人险金基本减除费用(统一为5000)”专项附加扣除费用依法扣除的其他扣除费用.

调整前后个人所得税税率表如下:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

级数

全月应纳税所得额

税率(%

级数

全月应纳税所得额

税率(%

1

不超过1500元的部分

3

1

不超过3000元的部分

3

2

超过1500元至4500元的部分

10

2

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

3

超过12000元至25000元的部分

20

某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,扣除险金后,制成下面的频数分布表:

收入(元)

人数

10

20

25

20

15

10

)估算小李公司员工该月扣除险金后的平均收入为多少?

)若小李在该月扣除险金后的收入为10000元,假设小李除住房租金一项专项扣除费用1500元外,无其他依法扣除费用,则201911日起小李的个人所得税,比2018101日之前少交多少?

)先从收入在[900011000)[1100013000)的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宜讲员,求两个宣讲员不全是同一收入人群的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足,an+23an+12ana11a23,记bnSn为数列{bn}的前n项和.

1)求证:{an+1an}为等比数列,并求an

2)求证:Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设{an}是一个首项为2,公比为qq1)的等比数列,且3a12a2a3成等差数列.

1)求{an}的通项公式;

2)已知数列{bn}的前n项和为Snb1=1,且1n2),求数列{anbn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设整数满足..f的最小值f0.并确定使f=f0成立的数组的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离处的平面截这两个几何体,截面分别为圆面和圆环,可以证明=圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足

)求证:

)设数列的前项和为,求证:

)设数列的前项和为,求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求证:有且只有两个零点

2有两个极值点,且不等式恒成立,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案