【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.曲线的极坐标方程为,曲线与曲线的交线为直线.
(1)求直线和曲线的直角坐标方程;
(2)直线与轴交于点,与曲线相交于,两点,求的值.
科目:高中数学 来源: 题型:
【题目】直线l:x﹣y0将圆O:分成的两部分的面积之比为( )
A.(4π):(8π)B.(4π﹣3):(8π+3)
C.(2π﹣2):(10π+2)D.(2π﹣3):(10π+3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】依法纳税是公民应尽的义务,随着经济的发展,个人收入的提高,自2018年10月1日起,个人所得税起征点和税率进行了调整,调整前后的计算方法如下表,2018年12月22日国务院又印发了《个人所得税专项附加扣除暂行办法》(以下简称《办法》),自2019年1月1日起施行,该《办法》指出,个人所得税专项附加扣除,是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等6项专项附加扣除.简单来说,2018年10月1日之前,“应纳税所得额”“税前收入”“险金”“基本减除费用(统一为3500元)”“依法扣除的其他扣除费用”;自2019年1月1日起,“应纳税所得额”“税前收人”“险金”“基本减除费用(统一为5000元)”“专项附加扣除费用”“依法扣除的其他扣除费用.
调整前后个人所得税税率表如下:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元的部分 | 3 | 1 | 不超过3000元的部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
某税务部门在小李所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,扣除险金后,制成下面的频数分布表:
收入(元) | ||||||
人数 | 10 | 20 | 25 | 20 | 15 | 10 |
(Ⅰ)估算小李公司员工该月扣除险金后的平均收入为多少?
(Ⅱ)若小李在该月扣除险金后的收入为10000元,假设小李除住房租金一项专项扣除费用1500元外,无其他依法扣除费用,则2019年1月1日起小李的个人所得税,比2018年10月1日之前少交多少?
(Ⅲ)先从收入在[9000,11000)及[11000,13000)的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宜讲员,求两个宣讲员不全是同一收入人群的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足,an+2=3an+1﹣2an,a1=1,a2=3,记bn,Sn为数列{bn}的前n项和.
(1)求证:{an+1﹣an}为等比数列,并求an;
(2)求证:Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设{an}是一个首项为2,公比为q(q1)的等比数列,且3a1,2a2,a3成等差数列.
(1)求{an}的通项公式;
(2)已知数列{bn}的前n项和为Sn,b1=1,且1(n≥2),求数列{anbn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆=圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com