精英家教网 > 高中数学 > 题目详情

【题目】已知实数a>0, 方程 有且仅有两个不等实根,且较大的实根大于3,则实数a的取值范围

【答案】
【解析】解:设比较大的根为x1 , 则x1>3, 此时由 =log3x>log33=1,
即a ,即a
∵方程 有且仅有两个不等实根,
∴当x≤1时,方程 有且仅有1实根,
即﹣x ,在x≤1时,只有一个根.
∴x
设g(x)=x ,(x≤1),
函数的对称轴为x=a,
若a≥1,
∵g(0)=
∴此时满足g(1)≤0,(图1)

即g(1)=1﹣2a+ ≤0,
∴7a2﹣32a+16≤0,
解得 ,∴此时1≤a≤4,.
若0<a<1,
∵g(0)=
∴此时满足g(1)<0,
即g(1)=1﹣2a+ <0,
∴77a2﹣32a+16<0,
解得 ,∴此时

又a

即实数a的取值范围是
所以答案是:

【考点精析】关于本题考查的函数的零点与方程根的关系和函数的零点,需要了解二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,
①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1) 关于的方程在区间上有解,求的取值范围;

(2) 当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,G1 , G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是(

A.相交
B.平行
C.异面
D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方形,直角梯形,直角梯形所在平面两两垂直, ,且 .

1)求证: 四点共面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,若三个内角A,B,C成等差数列,且a= ,b= ,求sinC的值.

查看答案和解析>>

同步练习册答案