精英家教网 > 高中数学 > 题目详情

【题目】已知函数(其中),记函数的导函数为

(Ⅰ)求函数的单调区间;

(Ⅱ)是否存在实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.

【答案】(1)的单调减区间为,无递增区间;(2)见解析

【解析】

I)求得也即的表达式,对求导,由此求得的单调区间.II)解法一:利用的单调性,求得的零点,由此求得关于的关系式.由于的导函数,根据的单调性,可求得的最大值,利用这个最大值列不等式,用基本不等式等号成立的条件,求得的值.解法二:对分成两类,利用求出的的范围比较后求得的值.

(Ⅰ)

,∵,∴恒成立,

的单调减区间为,无递增区间;

(Ⅱ)解法一:由(Ⅰ)知上单调递减,所以上必存在实数根,不妨记,即,可得 (*)

时,,即,当时,,即

所以上单调递增,在上单调递减,

所以

把(*)式代入可得

依题意恒成立,又由基本不等式有,当且仅当时等号成立,解得,所以

代入(*)式得,,所以,又∵,所以解得

综上所述,存在实数,使得对任意正实数恒成立

解法二:要使恒成立,

时,,解得,所以

时,,解得,所以

依题意可知,①、②应同时成立,则,又∵,所以解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定点,直线相交于点,且它们的斜率之积为,记动点的轨迹为曲线.

(Ⅰ)求曲线的方程;

(Ⅱ)设直线与曲线交于两点,若直线斜率之积为,求证:直线过定点,并求定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 有极值,且函数的极值点是的极值点,其中是自然对数的底数.(极值点是指函数取得极值时对应的自变量的值)

(1)求关于的函数关系式;

(2)当时,若函数的最小值为,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于区间[a,b](a<b),若函数同时满足:①在[a,b]上是单调函数,②函数在[a,b]的值域是[a,b],则称区间[a,b]为函数的“保值”区间

(1)求函数的所有“保值”区间

(2)函数是否存在“保值”区间?若存在,求的取值范围,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,真命题是( )

A. ,则为实数的充要条件是为共轭复数;

B. “直线与曲线C相切”是“直线与曲线C只有一个公共点”的充分不必要条件;

C. “若两直线,则它们的斜率之积等于”的逆命题;

D. 是R上的可导函数,“若的极值点,则”的否命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),曲线的上点 对应的参数,将曲线经过伸缩变换后得到曲线,直线的参数方程为

(1)说明曲线是哪种曲线,并将曲线转化为极坐标方程;

(2)求曲线上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,⊥平面,底面为梯形,的中点

Ⅰ)证明:∥平面

(Ⅱ)求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是 (  )

A. “若,则,或”的否定是“若,或

B. a,b是两个命题,如果a是b的充分条件,那么的必要条件.

C. 命题“,使 得”的否定是:“,均有

D. 命题“ 若,则”的否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆直线.

(1)求与圆相切且与直线垂直的直线方程

(2)在直线为坐标原点),存在定点(不同于点),满足:对于圆上任一点都有为一常数试求所有满足条件的点的坐标.

【答案】(1)(2)答案见解析.

【解析】试题分析:

(1)设所求直线方程为利用圆心到直线的距离等于半径可得关于b的方程,解方程可得则所求直线方程为

(2)方法1:假设存在这样的点由题意可得,然后证明为常数为即可.

方法2:假设存在这样的点,使得为常数,则据此得到关于的方程组,求解方程组可得存在点对于圆上任一点,都有为常数.

试题解析:

(1)设所求直线方程为,即

∵直线与圆相切,∴,得

∴所求直线方程为

(2)方法1:假设存在这样的点

为圆轴左交点时,

为圆轴右交点时,

依题意,,解得,(舍去),或.

下面证明点对于圆上任一点,都有为一常数.

,则

从而为常数.

方法2:假设存在这样的点,使得为常数,则

,将代入得,

,即

恒成立,

,解得(舍去),

所以存在点对于圆上任一点,都有为常数.

点睛:求定值问题常见的方法有两种:

(1)从特殊入手,求出定值,再证明这个值与变量无关.

(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

型】解答
束】
22

【题目】已知函数的导函数为其中为常数.

(1)当的最大值并推断方程是否有实数解

(2)若在区间上的最大值为-3,的值.

查看答案和解析>>

同步练习册答案